## ---- echo = FALSE, message = FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(WR) head(non_ischemic) ## ----------------------------------------------------------------------------- colnames(non_ischemic)[4:16]=c( "Training vs Usual","Age (year)","Male vs Female","Black vs White", "Other vs White", "BMI","LVEF","Hypertension","COPD","Diabetes", "ACE Inhibitor","Beta Blocker", "Smoker" ) ## ----------------------------------------------------------------------------- # sample size length(unique(non_ischemic$ID)) # median length of follow-up time median(non_ischemic$time[non_ischemic$status<2])/30.5 ## ----------------------------------------------------------------------------- # get the number of rows and number of covariates. nr <- nrow(non_ischemic) p <- ncol(non_ischemic)-3 # extract ID, time, status and covariates matrix Z from the data. # note that: ID, time and status should be column vector. # covariatesZ should be (nr, p) matrix. ID <- non_ischemic[,"ID"] time <- non_ischemic[,"time"] status <- non_ischemic[,"status"] Z <- as.matrix(non_ischemic[,4:(3+p)],nr,p) # pass the parameters into the function pwreg.obj <- pwreg(time=time,status=status,Z=Z,ID=ID) print(pwreg.obj) ## ----------------------------------------------------------------------------- #extract estimates of (\beta_4,\beta_5) beta <- matrix(pwreg.obj$beta[4:5]) #extract estimated covariance matrix for (\beta_4,\beta_5) Sigma <- pwreg.obj$Var[4:5,4:5] #compute chisq statistic in quadratic form chistats <- t(beta) %*% solve(Sigma) %*% beta #compare the Wald statistic with the reference # distribution of chisq(2) to obtain the p-value 1 - pchisq(chistats, df=2) ## ---- fig.height = 8, fig.width=7.5------------------------------------------- score.obj <- score.proc(pwreg.obj) print(score.obj) oldpar <- par(mfrow = par("mfrow")) par(mfrow = c(4,4)) for(i in c(1:13)){ plot(score.obj, k = i) } par(oldpar)