Title: | Interactive Analysis of UCSC Xena Data |
Version: | 2.1.0 |
Maintainer: | Shixiang Wang <w_shixiang@163.com> |
Description: | Provides functions and a Shiny application for downloading, analyzing and visualizing datasets from UCSC Xena (http://xena.ucsc.edu/), which is a collection of UCSC-hosted public databases such as TCGA, ICGC, TARGET, GTEx, CCLE, and others. |
License: | GPL (≥ 3) |
URL: | https://github.com/openbiox/UCSCXenaShiny, https://openbiox.github.io/UCSCXenaShiny/ |
BugReports: | https://github.com/openbiox/UCSCXenaShiny/issues |
Depends: | R (≥ 3.5) |
Imports: | digest, dplyr (≥ 0.8.3), ezcox, forcats, ggplot2 (≥ 3.2.0), ggpubr (≥ 0.2), httr, magrittr (≥ 1.5), ppcor, psych, purrr, rlang, shiny (≥ 1.3.2), stats, stringr, tibble (≥ 2.1.3), tidyr, UCSCXenaTools, utils |
Suggests: | covr (≥ 3.2.1), cowplot, DT (≥ 0.5), furrr, future, ggrepel, ggstatsplot, knitr, pacman, plotly, plyr, RColorBrewer (≥ 1.1.2), rmarkdown, Rtsne, scales, survival, survminer, testthat (≥ 2.0.1), umap, |
VignetteBuilder: | knitr |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.2.3 |
NeedsCompilation: | no |
Packaged: | 2024-05-14 16:53:54 UTC; wsx |
Author: | Shixiang Wang |
Repository: | CRAN |
Date/Publication: | 2024-05-15 14:10:06 UTC |
Xena Shiny App
Description
A Shiny App for UCSC Xena Data Hubs. See https://github.com/openbiox/UCSCXenaShiny for details.
Author(s)
Maintainer: Shixiang Wang w_shixiang@163.com (ORCID)
Authors:
Shensuo Li lishensuo@163.com
Yi Xiong neuroxiong@openbiox.com (ORCID)
Longfei Zhao longfei8533@126.com (ORCID)
Kai Gu gukai1212@163.com (ORCID)
Yin Li yinli18@fudan.edu.cn
Fei Zhao zhaofei415@mails.ucas.edu.cn
See Also
Useful links:
Report bugs at https://github.com/openbiox/UCSCXenaShiny/issues
Pipe Operator
Description
See magrittr::%>%
for details.
Usage
lhs %>% rhs
A default setting for pan-cancer studies
Description
A default setting for pan-cancer studies
Usage
.opt_pancan
Format
An object of class list
of length 16.
TCGA: Organ Data
Description
TCGA: Organ Data
Format
Examples
data("TCGA.organ")
Analyze Association between Gene (Signature) and Drug Response with CCLE Data
Description
Analyze partial correlation of gene-drug association after controlling for tissue average expression.
Usage
analyze_gene_drug_response_asso(gene_list, combine = FALSE)
Arguments
gene_list |
a gene symbol list. |
combine |
if |
Value
a data.frame
If
combine
isTRUE
, genes are combined assignature
.-
mean.diff
andmedian.diff
indicate mean and median of normalized expression difference between High IC50 cells and Low IC50 cells. The cutoff between High and Low are median IC50.
Examples
## Not run:
analyze_gene_drug_response_asso("TP53")
analyze_gene_drug_response_asso(c("TP53", "KRAS"))
analyze_gene_drug_response_asso(c("TP53", "KRAS"), combine = TRUE)
# Visualization
vis_gene_drug_response_asso("TP53")
## End(Not run)
Analyze Difference of Drug Response (IC50 Value (uM)) between Gene (Signature) High and Low Expression with CCLE Data
Description
Analyze Difference of Drug Response (IC50 Value (uM)) between Gene (Signature) High and Low Expression with CCLE Data
Usage
analyze_gene_drug_response_diff(
gene_list,
drug = "ALL",
tissue = "ALL",
combine = FALSE,
cutpoint = c(50, 50)
)
Arguments
gene_list |
a gene symbol list. |
drug |
a drug name. Check examples. |
tissue |
a tissue name. Check examples. |
combine |
if |
cutpoint |
cut point (in percent) for High and Low group, default is |
Value
a data.frame
.
Examples
tissue_list <- c(
"prostate", "central_nervous_system", "urinary_tract", "haematopoietic_and_lymphoid_tissue",
"kidney", "thyroid", "soft_tissue", "skin", "salivary_gland",
"ovary", "lung", "bone", "endometrium", "pancreas", "breast",
"large_intestine", "upper_aerodigestive_tract", "autonomic_ganglia",
"stomach", "liver", "biliary_tract", "pleura", "oesophagus"
)
drug_list <- c(
"AEW541", "Nilotinib", "17-AAG", "PHA-665752", "Lapatinib",
"Nutlin-3", "AZD0530", "PF2341066", "L-685458", "ZD-6474", "Panobinostat",
"Sorafenib", "Irinotecan", "Topotecan", "LBW242", "PD-0325901",
"PD-0332991", "Paclitaxel", "AZD6244", "PLX4720", "RAF265", "TAE684",
"TKI258", "Erlotinib"
)
target_list <- c(
"IGF1R", "ABL", "HSP90", "c-MET", "EGFR", "MDM2", "GS", "HDAC",
"RTK", "TOP1", "XIAP", "MEK", "CDK4", "TUBB1", "RAF", "ALK", "FGFR"
)
## Not run:
analyze_gene_drug_response_diff("TP53")
analyze_gene_drug_response_diff(c("TP53", "KRAS"), drug = "AEW541")
analyze_gene_drug_response_diff(c("TP53", "KRAS"),
tissue = "kidney",
combine = TRUE
)
# Visualization
vis_gene_drug_response_diff("TP53")
## End(Not run)
Run UCSC Xena Shiny App
Description
Run UCSC Xena Shiny App
Usage
app_run(runMode = "client", port = getOption("shiny.port"))
Arguments
runMode |
default is 'client' for personal user, set it to 'server' for running on server. |
port |
The TCP port that the application should listen on. If the
|
Examples
## Not run:
app_run()
## End(Not run)
Show Available Hosts
Description
Show Available Hosts
Usage
available_hosts()
Value
hosts
Examples
available_hosts()
ABSOLUTE Result of CCLE Database
Description
ABSOLUTE Result of CCLE Database
Format
A data.frame
Source
see "data_source" attribute.
Examples
data("ccle_absolute")
Phenotype Info of CCLE Database
Description
Phenotype Info of CCLE Database
Format
A data.frame
Source
UCSC Xena.
Examples
data("ccle_info")
Cleaned Phenotype Info of CCLE Database for grouping
Description
Cleaned Phenotype Info of CCLE Database for grouping
Format
A data.frame
Source
UCSC Xena.
Examples
data("ccle_info_fine")
Run Correlation between Two Variables and Support Group by a Variable
Description
Run Correlation between Two Variables and Support Group by a Variable
Usage
ezcor(
data = NULL,
split = FALSE,
split_var = NULL,
var1 = NULL,
var2 = NULL,
cor_method = "pearson",
adjust_method = "none",
use = "complete",
sig_label = TRUE,
verbose = TRUE
)
Arguments
data |
a |
split |
whether perform correlation grouped by a variable, default is 'FALSE' |
split_var |
a |
var1 |
a character, the first variable in correlation |
var2 |
a character, the second variable in correlation |
cor_method |
method="pearson" is the default value. The alternatives to be passed to cor are "spearman" and "kendall" |
adjust_method |
What adjustment for multiple tests should be used? ("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") |
use |
use="pairwise" will do pairwise deletion of cases. use="complete" will select just complete cases |
sig_label |
whether add symbal of significance. P < 0.001, |
verbose |
if |
Value
a data.frame
Author(s)
Yi Xiong
Run correlation between two variables in a batch mode and support group by a variable
Description
Run correlation between two variables in a batch mode and support group by a variable
Usage
ezcor_batch(
data,
var1,
var2,
split = FALSE,
split_var = NULL,
cor_method = "pearson",
adjust_method = "none",
use = "complete",
sig_label = TRUE,
parallel = FALSE,
verbose = FALSE
)
Arguments
data |
a |
var1 |
a character, the first variable in correlation |
var2 |
a character, the second variable in correlation |
split |
whether perform correlation grouped by a variable, default is 'FALSE' |
split_var |
a |
cor_method |
method="pearson" is the default value. The alternatives to be passed to cor are "spearman" and "kendall" |
adjust_method |
What adjustment for multiple tests should be used? ("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none") |
use |
use="pairwise" will do pairwise deletion of cases. use="complete" will select just complete cases |
sig_label |
whether add symbal of significance. P < 0.001, |
parallel |
if |
verbose |
if |
Value
a data.frame
Author(s)
Yi Xiong, Shixiang Wang
Run partial correlation
Description
Run partial correlation
Usage
ezcor_partial_cor(
data = NULL,
split = FALSE,
split_var = NULL,
var1 = NULL,
var2 = NULL,
var3 = NULL,
cor_method = "pearson",
sig_label = TRUE,
...
)
Arguments
data |
a |
split |
whether perform correlation grouped by a variable, default is 'FALSE' |
split_var |
a |
var1 |
a |
var2 |
a |
var3 |
a |
cor_method |
method="pearson" is the default value. The alternatives to be passed to cor are "spearman" and "kendall" |
sig_label |
whether add symbal of significance. P < 0.001,""; P < 0.01,""; P < 0.05,""; P >=0.05,"" |
... |
other arguments passed to methods |
Value
a data.frame
Author(s)
Yi Xiong
See Also
ppcor::pcor.test()
which this function wraps.
Fetch Identifier Value from Pan-cancer Dataset
Description
Identifier includes gene/probe etc.
Usage
get_ccle_cn_value(identifier)
get_ccle_gene_value(identifier, norm = c("rpkm", "nc"))
get_ccle_protein_value(identifier)
get_ccle_mutation_status(identifier)
get_pancan_value(
identifier,
subtype = NULL,
dataset = NULL,
host = available_hosts(),
samples = NULL,
...
)
get_pancan_gene_value(identifier, norm = c("tpm", "fpkm", "nc"))
get_pancan_transcript_value(identifier, norm = c("tpm", "fpkm", "isopct"))
get_pancan_protein_value(identifier)
get_pancan_mutation_status(identifier)
get_pancan_cn_value(identifier, gistic2 = TRUE, use_thresholded_data = FALSE)
get_pancan_methylation_value(
identifier,
type = c("450K", "27K"),
rule_out = NULL,
aggr = c("NA", "mean", "Q0", "Q25", "Q50", "Q75", "Q100")
)
get_pancan_miRNA_value(identifier)
get_pcawg_gene_value(identifier)
get_pcawg_fusion_value(identifier)
get_pcawg_promoter_value(identifier, type = c("raw", "relative", "outlier"))
get_pcawg_miRNA_value(identifier, norm = c("TMM", "UQ"))
get_pcawg_APOBEC_mutagenesis_value(
identifier = c("tCa_MutLoad_MinEstimate", "APOBECtCa_enrich", "A3A_or_A3B",
"APOBEC_tCa_enrich_quartile", "APOBECrtCa_enrich", "APOBECytCa_enrich",
"APOBECytCa_enrich-APOBECrtCa_enrich", "BH_Fisher_p-value_tCa", "ntca+tgan",
"rtCa_to_G+rtCa_to_T", "rtca+tgay", "tCa_to_G+tCa_to_T",
"ytCa_rtCa_BH_Fisher_p-value", "ytCa_rtCa_Fisher_p-value", "ytCa_to_G+ytCa_to_T",
"ytca+tgar")
)
Arguments
identifier |
a length-1 character representing a gene symbol, ensembl gene id, or probe id. Gene symbol is highly recommended. |
norm |
the normalization method. |
subtype |
a length-1 chracter representing a regular expression for matching
|
dataset |
a length-1 chracter representing a regular expression for matching
|
host |
a character vector representing host name(s), e.g. "toilHub". |
samples |
a character vector representing samples want to be returned. |
... |
other parameters. |
gistic2 |
if |
use_thresholded_data |
if |
type |
methylation type, one of "450K" and "27K".
for function |
rule_out |
methylation sites to rule out before analyzing. |
aggr |
apporaches to aggregate the methylation data, default is 'NA',
in such case, a mean value is obtained for gene-level methylation.
Allowed value is one of |
Value
a named vector or list
.
Functions
-
get_ccle_cn_value()
: Fetch copy number value from CCLE dataset -
get_ccle_gene_value()
: Fetch gene expression value from CCLE dataset -
get_ccle_protein_value()
: Fetch gene protein expression value from CCLE dataset -
get_ccle_mutation_status()
: Fetch gene mutation info from CCLE dataset -
get_pancan_value()
: Fetch identifier value from pan-cancer dataset -
get_pancan_gene_value()
: Fetch gene expression value from pan-cancer dataset -
get_pancan_transcript_value()
: Fetch gene transcript expression value from pan-cancer dataset -
get_pancan_protein_value()
: Fetch protein expression value from pan-cancer dataset -
get_pancan_mutation_status()
: Fetch mutation status value from pan-cancer dataset -
get_pancan_cn_value()
: Fetch gene copy number value from pan-cancer dataset processed by GISTIC 2.0 -
get_pancan_methylation_value()
: Fetch gene expression value from CCLE dataset -
get_pancan_miRNA_value()
: Fetch miRNA expression value from pan-cancer dataset -
get_pcawg_gene_value()
: Fetch specimen-level gene expression value from PCAWG cohort -
get_pcawg_fusion_value()
: Fetch specimen-level gene fusion value from PCAWG cohort -
get_pcawg_promoter_value()
: Fetch specimen-level gene promoter activity value from PCAWG cohort -
get_pcawg_miRNA_value()
: Fetch specimen-level miRNA value from PCAWG cohort -
get_pcawg_APOBEC_mutagenesis_value()
: Fetch specimen-level gene fusion value from PCAWG cohort
Examples
## Not run:
# Fetch TP53 expression value from pan-cancer dataset
t1 <- get_pancan_value("TP53",
dataset = "TcgaTargetGtex_rsem_isoform_tpm",
host = "toilHub"
)
t2 <- get_pancan_gene_value("TP53")
t3 <- get_pancan_protein_value("AKT")
t4 <- get_pancan_mutation_status("TP53")
t5 <- get_pancan_cn_value("TP53")
## End(Not run)
Keep Only Columns Used for Sample Selection
Description
Keep Only Columns Used for Sample Selection
Usage
keep_cat_cols(x, keep_sam_cols = TRUE, return_idx = TRUE)
Arguments
x |
a |
keep_sam_cols |
if |
return_idx |
if |
Value
a data.frame
or a list
.
Load Dataset Provided by This Package
Description
Load data from builtin or Zenodo.
Option xena.zenodoDir
can be used to set default path for storing
extra data from Zenodo, e.g., options(xena.zenodoDir = "/home/xxx/dataset")
.
Usage
load_data(name)
Arguments
name |
a dataset name. Could be one of Builtin datasets:
Remote datasets stored in Zenodo:
|
Value
a dataset, typically a data.frame
.
Examples
data1 <- load_data("tcga_surv")
data1
data2 <- load_data("tcga_armcalls")
data2
Quick molecule analysis and report generation
Description
Quick molecule analysis and report generation
Usage
mol_quick_analysis(molecule, data_type, out_dir = ".", out_report = FALSE)
Arguments
molecule |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type |
data type. Can be one of "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
out_dir |
path to save analysis result and report, default is '.' |
out_report |
logical value wheather to generate html report |
Value
a list.
Phenotype Info of PCAWG Database
Description
Phenotype Info of PCAWG Database
Format
A data.frame
Source
UCSC Xena.
Examples
data("pcawg_info")
Cleaned Phenotype Info of PCAWG Database for grouping
Description
Cleaned Phenotype Info of PCAWG Database for grouping
Format
A data.frame
Source
UCSC Xena.
Examples
data("pcawg_info_fine")
Purity Data of PCAWG
Description
Purity Data of PCAWG
Format
A data.frame
Source
UCSC Xena.
Examples
data("pcawg_purity")
download data for shiny general analysis
Description
download data for shiny general analysis
Usage
query_general_value(
L1,
L2,
L3,
database = c("toil", "pcawg", "ccle"),
tpc_value_nonomics = NULL,
opt_pancan = NULL,
custom_metadata = NULL
)
Arguments
L1 |
level 1 main datatype |
L2 |
level 2 sub datatype |
L3 |
level 3 identifier |
database |
one of c("toil","pcawg","ccle") |
tpc_value_nonomics |
non-omics matrix data of one database |
opt_pancan |
molecular datasets parameters |
custom_metadata |
user customized metadata |
Examples
## Not run:
general_value_id = UCSCXenaShiny:::query_general_id()
tcga_value_option = general_value_id[["value"]][[1]]
tcga_index_value = tcga_value_option[["Tumor index"]]
tcga_immune_value = tcga_value_option[["Immune Infiltration"]]
tcga_pathway_value = tcga_value_option[["Pathway activity"]]
tcga_phenotype_value = tcga_value_option[["Phenotype data"]]
clinical_phe = tcga_phenotype_value[["Clinical Phenotype"]]
x_data = UCSCXenaShiny:::query_general_value(
"Molecular profile", "mRNA Expression", "TP53", "toil",
tcga_index_value, tcga_immune_value, tcga_pathway_value,
clinical_phe)
y_data = UCSCXenaShiny:::query_general_value(
"Immune Infiltration", "CIBERSORT", "Monocyte", "toil",
tcga_index_value, tcga_immune_value, tcga_pathway_value,
clinical_phe)
## End(Not run)
Get Molecule or Signature Data Values from Dense (Genomic) Matrix Dataset of UCSC Xena Data Hubs
Description
Get Molecule or Signature Data Values from Dense (Genomic) Matrix Dataset of UCSC Xena Data Hubs
Usage
query_molecule_value(dataset, molecule, host = NULL)
Arguments
dataset |
a UCSC Xena dataset in dense matrix format (rows are features (e.g., gene, cell line) and columns are samples). |
molecule |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
host |
a UCSC Xena host, default is |
Value
a named vector.
Examples
# What does dense matrix mean?
table(UCSCXenaTools::XenaData$Type)
# It is a the UCSC Xena dataset with "Type" equals to "genomicMatrix"
## Not run:
dataset <- "ccle/CCLE_copynumber_byGene_2013-12-03"
x <- query_molecule_value(dataset, "TP53")
head(x)
signature <- "TP53 + 2*KRAS - 1.3*PTEN" # a space must exist in the string
y <- query_molecule_value(dataset, signature)
head(y)
## End(Not run)
Query Single Identifier or Signature Value from Pan-cancer Database
Description
Query Single Identifier or Signature Value from Pan-cancer Database
Usage
query_pancan_value(
molecule,
data_type = c("mRNA", "transcript", "protein", "mutation", "cnv", "methylation",
"miRNA", "fusion", "promoter", "APOBEC"),
database = c("toil", "ccle", "pcawg"),
reset_id = NULL,
opt_pancan = .opt_pancan
)
Arguments
molecule |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type |
data type. Can be one of "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
database |
database, either 'toil' for TCGA TARGET GTEx, or 'ccle' for CCLE. |
reset_id |
if not |
opt_pancan |
other extra parameters passing to the underlying functions. |
Details
query_pancan_value()
provide convenient interface to download multi-omics
data from 3 databases by specifying one or several canonical datasets. It is
derived from query_pancan_value()
and support query for genomic signature.
To query comprehensive datasets that UCSCXena supports, users can check
UCSCXenaTools::XenaData
and use get_pancan_value()
directly.
Option opt_pancan
is a nested list and allow to adjust the downloading details.
For now, only cnv(toil)
,methylation(toil)
,miRNA(toil)
,miRNA(pcawg)
,promoter(pcawg)
support optional parameters. The default set is .opt_pancan
and we check meanings of sublist(parameters)
through the following relationship.
Value
a list.
"toil" database
mRNA–
get_pancan_gene_value()
transcript–
get_pancan_transcript_value()
protein–
get_pancan_protein_value()
mutation–
get_pancan_mutation_status()
cnv–
get_pancan_cn_value()
methylation–
get_pancan_methylation_value()
miRNA–
get_pancan_miRNA_value()
"ccle" database
mRNA–
get_ccle_gene_value()
protein–
get_ccle_protein_value()
mutation–
get_ccle_mutation_status()
cnv–
get_ccle_cn_value()
"pcawg" database
mRNA–
get_pcawg_gene_value()
miRNA–
get_pcawg_miRNA_value()
promoter–
get_pcawg_promoter_value()
fusion–
get_pcawg_fusion_value()
APOBEC–
get_pcawg_APOBEC_mutagenesis_value()
Examples
## Not run:
query_pancan_value("KRAS")
query_pancan_value("KRAS", database = "ccle")
query_pancan_value("KRAS", database = "pcawg")
query_pancan_value("ENSG00000000419",
database = "pcawg",
data_type = "fusion"
) # gene symbol also work
.opt_pancan
opt_pancan = list(toil_cnv = list(use_thresholded_data = FALSE))
query_pancan_value("PTEN",data_type = "cnv", database = "toil", opt_pancan = opt_pancan)
opt_pancan = list(toil_methylation = list(type = "450K",rule_out = "cg21115430", aggr = "Q25"))
query_pancan_value("PTEN",data_type = "methylation", database = "toil", opt_pancan = opt_pancan)
## End(Not run)
Group TPC samples by build-in or custom phenotype and support filtering or merging operations
Description
Group TPC samples by build-in or custom phenotype and support filtering or merging operations
Usage
query_tcga_group(
database = c("toil", "pcawg", "ccle"),
cancer = NULL,
custom = NULL,
group = "Gender",
filter_by = NULL,
filter_id = NULL,
merge_by = NULL,
merge_quantile = FALSE,
return_all = FALSE
)
Arguments
database |
one of c("toil","pcawg","ccle") |
cancer |
select cancer cohort(s) |
custom |
upload custom phenotype data |
group |
target group names |
filter_by |
filter samples by one or multiple criterion |
filter_id |
directly filter samples by provided sample ids |
merge_by |
merge the target group for main categories |
merge_quantile |
whether to merge numerical variable by percentiles |
return_all |
return the all phenotype data |
Value
a list object with grouping samples and statistics
Examples
## Not run:
query_tcga_group(group = "Age")
query_tcga_group(cancer="BRCA",
group = "Stage_ajcc"
)
query_tcga_group(cancer="BRCA",
group = "Stage_ajcc",
filter_by = list(
c("Code",c("TP"),"+"),
c("Stage_ajcc",c(NA),"-"))
)
query_tcga_group(cancer="BRCA",
group = "Stage_ajcc",
filter_by = list(
c("Age",c(0.5),"%>"))
)
query_tcga_group(cancer="BRCA",
group = "Stage_ajcc",
filter_by = list(
c("Age",c(60),">"))
)
query_tcga_group(cancer="BRCA",
group = "Stage_ajcc",
merge_by = list(
"Early"=c("Stage I"),
"Late" = c("Stage II","Stage III","Stage IV"))
)
query_tcga_group(cancer="BRCA",
group = "Age",
merge_by = list(
"Young"= c(20, 60),
"Old"= c(60, NA)
)
)
query_tcga_group(cancer="BRCA",
group = "Age",
merge_quantile = TRUE,
merge_by = list(
"Young"= c(0, 0.5),
"Old"= c(0.5, 1)
)
)
## End(Not run)
Obtain ToilHub Info for Single Molecule
Description
Obtain ToilHub Info for Single Molecule
Obtain ToilHub Info for Single Gene
Usage
query_toil_value_df(identifier = "TP53")
query_toil_value_df(identifier = "TP53")
Arguments
identifier |
a length-1 character representing a gene symbol, ensembl gene id, or probe id. Gene symbol is highly recommended. |
Value
a tibble
a tibble
Examples
## Not run:
t <- query_toil_value_df()
t
## End(Not run)
## Not run:
t <- query_toil_value_df()
t
## End(Not run)
TCGA Survival Analysis
Description
Firstly, get merged data of one molecular profile value and associated clinical data from TCGA Pan-Cancer dataset.
Secondly, filter data as your wish.
Finally, show K-M plot.
Usage
tcga_surv_get(
item,
TCGA_cohort = "LUAD",
profile = c("mRNA", "miRNA", "methylation", "transcript", "protein", "mutation", "cnv"),
TCGA_cli_data = dplyr::full_join(load_data("tcga_clinical"), load_data("tcga_surv"), by
= "sample"),
opt_pancan = .opt_pancan
)
tcga_surv_plot(
data,
time = "time",
status = "status",
cutoff_mode = c("Auto", "Custom"),
cutpoint = c(50, 50),
cnv_type = c("Duplicated", "Normal", "Deleted"),
profile = c("mRNA", "miRNA", "methylation", "transcript", "protein", "mutation", "cnv"),
palette = "aaas",
...
)
Arguments
item |
a molecular identifier, can be gene symbol (common cases), protein symbol, etc. |
TCGA_cohort |
a TCGA cohort, e.g. "LUAD" (default), "LUSC", "ACC". |
profile |
a molecular profile. Option can be one of "mRNA" (default), "miRNA", "methylation", "transcript", "protein", "mutation", "cnv". |
TCGA_cli_data |
a |
opt_pancan |
specify one dataset for some molercular profiles |
data |
a subset of result from |
time |
the column name for "time". |
status |
the column name for "status". |
cutoff_mode |
mode for grouping samples, can be "Auto" (default) or "Custom". |
cutpoint |
cut point (in percent) for "Custom" mode, default is |
cnv_type |
only used when profile is "cnv", can select from |
palette |
color palette, can be "hue", "grey", "RdBu", "Blues", "npg", "aaas", etc.
More see |
... |
other parameters passing to |
Value
a data.frame
or a plot.
Examples
## Not run:
# 1. get data
data <- tcga_surv_get("TP53")
# 2. filter data (optional)
# 3. show K-M plot
tcga_surv_plot(data, time = "DSS.time", status = "DSS")
## End(Not run)
Toil Hub: TCGA Clinical Data
Description
See tcga_surv
for TCGA survival data.
Format
Source
Generate from data-raw
Examples
data("tcga_clinical")
Toil Hub: Cleaned TCGA Clinical Data for grouping
Description
See tcga_surv
for TCGA survival data.
Format
Source
Generate from data-raw
Examples
data("tcga_clinical_fine")
TCGA: Genome Instability Data
Description
TCGA: Genome Instability Data
Format
Source
https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018
Examples
data("tcga_genome_instability")
Toil Hub: Merged TCGA GTEx Selected Phenotype
Description
Toil Hub: Merged TCGA GTEx Selected Phenotype
Format
Examples
data("tcga_gtex")
TCGA: Purity Data
Description
TCGA: Purity Data
Format
Source
https://www.nature.com/articles/ncomms9971#Sec14
Examples
data("tcga_purity")
TCGA Subtype Data
Description
TCGA Subtype Data
Format
Source
UCSC Xena.
Examples
data("tcga_subtypes")
Toil Hub: TCGA Survival Data
Description
Toil Hub: TCGA Survival Data
Format
Source
Generate from data-raw
Examples
data("tcga_surv")
TCGA: TMB (Tumor Mutation Burden) Data
Description
TCGA: TMB (Tumor Mutation Burden) Data
Format
Source
https://gdc.cancer.gov/about-data/publications/panimmune
Examples
data("tcga_tmb")
Toil Hub: TCGA TARGET GTEX Selected Phenotype
Description
Toil Hub: TCGA TARGET GTEX Selected Phenotype
Format
Source
Generate from data-raw
Examples
data("toil_info")
Visualize CCLE Gene Expression Correlation
Description
Visualize CCLE Gene Expression Correlation
Usage
vis_ccle_gene_cor(
Gene1 = "CSF1R",
Gene2 = "JAK3",
data_type1 = "mRNA",
data_type2 = "mRNA",
cor_method = "spearman",
use_log_x = FALSE,
use_log_y = FALSE,
use_regline = TRUE,
SitePrimary = "prostate",
use_all = FALSE,
alpha = 0.5,
color = "#000000",
opt_pancan = .opt_pancan
)
Arguments
Gene1 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Gene2 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type1 |
choose gene profile type for the first gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
data_type2 |
choose gene profile type for the second gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
cor_method |
correlation method |
use_log_x |
if |
use_log_y |
if |
use_regline |
if |
SitePrimary |
select cell line origin tissue. |
use_all |
use all sample, default |
alpha |
dot alpha. |
color |
dot color. |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Visualize CCLE Gene Expression
Description
Visualize CCLE Gene Expression
Usage
vis_ccle_tpm(
Gene = "TP53",
data_type = "mRNA",
use_log = FALSE,
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type |
support genomic profile for CCLE, currently "mRNA", "protein","cnv" are supported |
use_log |
if |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Visualize the distribution difference of samples after dimension reduction analysis
Description
Visualize the distribution difference of samples after dimension reduction analysis
Usage
vis_dim_dist(
ids = c("TP53", "KRAS", "PTEN", "MDM2", "CDKN1A"),
data_type = "mRNA",
group_info = NULL,
DR_method = c("PCA", "UMAP", "tSNE"),
palette = "Set1",
add_margin = NULL,
opt_pancan = .opt_pancan
)
Arguments
ids |
molecular identifiers (>=3) |
data_type |
molecular types, refer to query_pancan_value() function |
group_info |
two-column grouping information with names 'Sample','Group' |
DR_method |
the dimension reduction method |
palette |
the color setting of RColorBrewer |
add_margin |
the marginal plot (NULL, "density", "boxplot") |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot object or rawdata list
Examples
## Not run:
group_info = tcga_clinical_fine %>%
dplyr::filter(Cancer=="BRCA") %>%
dplyr::select(Sample, Code) %>%
dplyr::rename(Group=Code)
vis_dim_dist(
ids = c("TP53", "KRAS", "PTEN", "MDM2", "CDKN1A"),
group_info = group_info
)
## End(Not run)
Heatmap for Correlation between Gene and Tumor Immune Infiltration (TIL)
Description
Heatmap for Correlation between Gene and Tumor Immune Infiltration (TIL)
Usage
vis_gene_TIL_cor(
Gene = "TP53",
cor_method = "spearman",
data_type = "mRNA",
sig = c("B cell_TIMER", "T cell CD4+_TIMER", "T cell CD8+_TIMER", "Neutrophil_TIMER",
"Macrophage_TIMER", "Myeloid dendritic cell_TIMER"),
Plot = "TRUE",
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
cor_method |
correlation method |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
sig |
Immune Signature, default: result from TIMER |
Plot |
output the plot directly, default 'TRUE' |
opt_pancan |
specify one dataset for some molercular profiles |
Examples
## Not run:
p <- vis_gene_TIL_cor(Gene = "TP53")
## End(Not run)
Visualize Gene-Gene Correlation in TCGA
Description
Visualize Gene-Gene Correlation in TCGA
Usage
vis_gene_cor(
Gene1 = "CSF1R",
Gene2 = "JAK3",
data_type1 = "mRNA",
data_type2 = "mRNA",
use_regline = TRUE,
purity_adj = TRUE,
alpha = 0.5,
color = "#000000",
filter_tumor = TRUE,
opt_pancan = .opt_pancan
)
Arguments
Gene1 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Gene2 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type1 |
choose gene profile type for the first gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
data_type2 |
choose gene profile type for the second gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
use_regline |
if |
purity_adj |
whether performing partial correlation adjusted by purity |
alpha |
dot alpha. |
color |
dot color. |
filter_tumor |
whether use tumor sample only, default |
opt_pancan |
specify one dataset for some molercular profiles |
Visualize Gene-Gene Correlation in a TCGA Cancer Type
Description
Visualize Gene-Gene Correlation in a TCGA Cancer Type
Usage
vis_gene_cor_cancer(
Gene1 = "CSF1R",
Gene2 = "JAK3",
data_type1 = "mRNA",
data_type2 = "mRNA",
purity_adj = TRUE,
cancer_choose = "GBM",
use_regline = TRUE,
cor_method = "spearman",
use_all = FALSE,
alpha = 0.5,
color = "#000000",
opt_pancan = .opt_pancan
)
Arguments
Gene1 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Gene2 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type1 |
choose gene profile type for the first gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
data_type2 |
choose gene profile type for the second gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
purity_adj |
whether performing partial correlation adjusted by purity |
cancer_choose |
TCGA cohort name, e.g. "ACC". |
use_regline |
if |
cor_method |
correlation method. |
use_all |
use all sample, default |
alpha |
dot alpha. |
color |
dot color. |
opt_pancan |
specify one dataset for some molercular profiles |
Visualize Gene and Drug-Target Association with CCLE Data
Description
See analyze_gene_drug_response_asso for examples.
Usage
vis_gene_drug_response_asso(
Gene = "TP53",
x_axis_type = c("mean.diff", "median.diff"),
output_form = c("plotly", "ggplot2")
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
x_axis_type |
set the value type for X axis. |
output_form |
|
Value
plotly
or ggplot2
object.
Visualize Gene and Drug Response Difference with CCLE Data
Description
See analyze_gene_drug_response_diff for examples.
Usage
vis_gene_drug_response_diff(
Gene = "TP53",
tissue = "lung",
Show.P.label = TRUE,
Method = "wilcox.test",
values = c("#DF2020", "#DDDF21"),
alpha = 0.5
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
tissue |
select cell line origin tissue. |
Show.P.label |
|
Method |
default method is wilcox.test |
values |
the color to fill tumor or normal |
alpha |
set alpha for dots. |
Value
a ggplot
object.
Heatmap for Correlation between Gene and Immune Signatures
Description
Heatmap for Correlation between Gene and Immune Signatures
Usage
vis_gene_immune_cor(
Gene = "TP53",
cor_method = "spearman",
data_type = "mRNA",
Immune_sig_type = "Cibersort",
Plot = "TRUE",
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
cor_method |
correlation method |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
Immune_sig_type |
quantification method, default is "Cibersort" |
Plot |
output the plot directly, default 'TRUE' |
opt_pancan |
specify one dataset for some molercular profiles |
Examples
## Not run:
p <- vis_gene_immune_cor(Gene = "TP53")
## End(Not run)
Visualize Correlation between Gene and MSI (Microsatellite instability)
Description
Visualize Correlation between Gene and MSI (Microsatellite instability)
Usage
vis_gene_msi_cor(
Gene = "TP53",
cor_method = "spearman",
data_type = "mRNA",
Plot = "TRUE",
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
cor_method |
correlation method |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
Plot |
output the plot directly, default 'TRUE' |
opt_pancan |
specify one dataset for some molercular profiles |
Examples
## Not run:
p <- vis_gene_msi_cor(Gene = "TP53")
## End(Not run)
Visualize Correlation between Gene and Pathway signature Score
Description
Visualize Correlation between Gene and Pathway signature Score
Usage
vis_gene_pw_cor(
Gene = "TP53",
data_type = "mRNA",
pw_name = "HALLMARK_ADIPOGENESIS",
cancer_choose = "GBM",
use_regline = TRUE,
cor_method = "spearman",
use_all = FALSE,
alpha = 0.5,
color = "#000000",
filter_tumor = TRUE,
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying genomic signature ("TP53 + 2 * KRAS - 1.3 * PTEN"). |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
pw_name |
the queried Pathway name, see the supported pathway from 'load("toil_sig_score")'default is NULL |
cancer_choose |
select cancer cohort(s) |
use_regline |
if TRUE, add regression line. |
cor_method |
select correlation coefficient (pearson/spearman) |
use_all |
use all sample, default FALSE. |
alpha |
dot alpha. |
color |
dot color. |
filter_tumor |
whether use tumor sample only, default TRUE |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object or dataframe
Examples
## Not run:
vis_gene_pw_cor(Gene = "TP53", data_type = "mRNA",
pw_name = "HALLMARK_ADIPOGENESIS",
cancer_choose = "BRCA")
## End(Not run)
Visualize Correlation between Gene and Tumor Stemness
Description
Visualize Correlation between Gene and Tumor Stemness
Usage
vis_gene_stemness_cor(
Gene = "TP53",
cor_method = "spearman",
data_type = "mRNA",
Plot = "TRUE",
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
cor_method |
correlation method |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
Plot |
output the plot directly, default 'TRUE' |
opt_pancan |
specify one dataset for some molercular profiles |
Examples
## Not run:
p <- vis_gene_stemness_cor(Gene = "TP53")
p
## End(Not run)
## To generate a radar plot, uncomment the following code
# pdata <- p$data %>%
# dplyr::mutate(cor = round(cor, digits = 3), p.value = round(p.value, digits = 3))
#
# df <- pdata %>%
# select(cor, cancer) %>%
# pivot_wider(names_from = cancer, values_from = cor)
#
# ggradar::ggradar(
# df[1, ],
# font.radar = "sans",
# values.radar = c("-1", "0", "1"),
# grid.min = -1, grid.mid = 0, grid.max = 1,
# # Background and grid lines
# background.circle.colour = "white",
# gridline.mid.colour = "grey",
# # Polygons
# group.line.width = 1,
# group.point.size = 3,
# group.colours = "#00AFBB") +
# theme(plot.title = element_text(hjust = .5))
Visualize Correlation between Gene and TMB (Tumor Mutation Burden)
Description
Visualize Correlation between Gene and TMB (Tumor Mutation Burden)
Usage
vis_gene_tmb_cor(
Gene = "TP53",
cor_method = "spearman",
data_type = "mRNA",
Plot = "TRUE",
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
cor_method |
correlation method |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
Plot |
output the plot directly, default 'TRUE' |
opt_pancan |
specify one dataset for some molercular profiles |
Examples
## Not run:
p <- vis_gene_tmb_cor(Gene = "TP53")
## End(Not run)
Visualize Identifier-Identifier Correlation
Description
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_cor(
dataset1,
id1,
dataset2,
id2,
samples = NULL,
use_ggstats = FALSE,
use_simple_axis_label = TRUE,
line_color = "blue",
alpha = 0.5,
...
)
Arguments
dataset1 |
the dataset to obtain |
id1 |
the first molecule identifier. |
dataset2 |
the dataset to obtain |
id2 |
the second molecule identifier. |
samples |
default is |
use_ggstats |
if |
use_simple_axis_label |
if |
line_color |
set the color for regression line. |
alpha |
set the alpha for dots. |
... |
other parameters passing to ggscatter. |
Value
a (gg)plot object.
Examples
## Not run:
dataset <- "TcgaTargetGtex_rsem_isoform_tpm"
id1 <- "TP53"
id2 <- "KRAS"
vis_identifier_cor(dataset, id1, dataset, id2)
samples <- c(
"TCGA-D5-5538-01", "TCGA-VM-A8C8-01",
"TCGA-ZN-A9VQ-01", "TCGA-EE-A17X-06",
"TCGA-05-4420-01"
)
vis_identifier_cor(dataset, id1, dataset, id2, samples)
dataset1 <- "TCGA-BLCA.htseq_counts.tsv"
dataset2 <- "TCGA-BLCA.gistic.tsv"
id1 <- "TP53"
id2 <- "KRAS"
vis_identifier_cor(dataset1, id1, dataset2, id2)
## End(Not run)
Visualize the distribution difference of samples after Molecule Identifier dimension reduction analysis
Description
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_dim_dist(
dataset = NULL,
ids = NULL,
grp_df,
samples = NULL,
return.data = FALSE,
DR_method = c("PCA", "UMAP", "tSNE"),
add_margin = NULL,
palette = "Set1"
)
Arguments
dataset |
the dataset to obtain identifiers. |
ids |
the molecule identifiers. |
grp_df |
When
|
samples |
default is |
return.data |
whether to reture the raw meta/matrix data (list) instead of plot |
DR_method |
the dimension reduction method |
add_margin |
the marginal plot (NULL, "density", "boxplot") |
palette |
the color setting of RColorBrewer |
Value
a ggplot
object.
Examples
library(UCSCXenaTools)
expr_dataset <- "TCGA.LUAD.sampleMap/HiSeqV2_percentile"
ids = c("TP53", "KRAS", "PTEN", "MDM2", "CDKN1A")
cli_dataset <- "TCGA.LUAD.sampleMap/LUAD_clinicalMatrix"
cli_df <- XenaGenerate(
subset = XenaDatasets == cli_dataset
) %>%
XenaQuery() %>%
XenaDownload() %>%
XenaPrepare()
grp_df = cli_df[, c("sampleID", "gender")]
vis_identifier_dim_dist(expr_dataset, ids, grp_df, DR_method="PCA")
Visualize Comparison of an Molecule Identifier between Groups
Description
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_grp_comparison(
dataset = NULL,
id = NULL,
grp_df,
samples = NULL,
fun_type = c("betweenstats", "withinstats"),
type = c("parametric", "nonparametric", "robust", "bayes"),
pairwise.comparisons = TRUE,
p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",
"none"),
ggtheme = cowplot::theme_cowplot(),
...
)
Arguments
dataset |
the dataset to obtain identifiers. |
id |
the molecule identifier. |
grp_df |
When
|
samples |
default is |
fun_type |
select the function to compare groups. |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
pairwise.comparisons |
whether pairwise comparison |
p.adjust.method |
Adjustment method for p-values for multiple
comparisons. Possible methods are: |
ggtheme |
A |
... |
other parameters passing to ggstatsplot::ggbetweenstats or ggstatsplot::ggwithinstats. |
Value
a (gg)plot object.
Examples
## Not run:
library(UCSCXenaTools)
expr_dataset <- "TCGA.LUAD.sampleMap/HiSeqV2_percentile"
cli_dataset <- "TCGA.LUAD.sampleMap/LUAD_clinicalMatrix"
id <- "TP53"
cli_df <- XenaGenerate(
subset = XenaDatasets == "TCGA.LUAD.sampleMap/LUAD_clinicalMatrix"
) %>%
XenaQuery() %>%
XenaDownload() %>%
XenaPrepare()
# group data.frame with 2 columns
vis_identifier_grp_comparison(expr_dataset, id, cli_df[, c("sampleID", "gender")])
# group data.frame with 3 columns
vis_identifier_grp_comparison(
expr_dataset, id,
cli_df[, c("sampleID", "pathologic_M", "gender")] %>%
dplyr::filter(pathologic_M %in% c("M0", "MX"))
)
# When not use the value of `identifier` from `dataset`
vis_identifier_grp_comparison(grp_df = cli_df[, c(1, 2, 71)])
vis_identifier_grp_comparison(grp_df = cli_df[, c(1, 2, 71, 111)])
## End(Not run)
Visualize Identifier Group Survival Difference
Description
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_grp_surv(
dataset = NULL,
id = NULL,
surv_df,
samples = NULL,
cutoff_mode = c("Auto", "Custom", "None"),
cutpoint = c(50, 50),
palette = "aaas",
...
)
Arguments
dataset |
the dataset to obtain identifiers. |
id |
the molecule identifier. |
surv_df |
a
|
samples |
default is |
cutoff_mode |
mode for grouping samples, can be "Auto" (default) or "Custom" or "None" (for groups have been prepared). |
cutpoint |
cut point (in percent) for "Custom" mode, default is |
palette |
color palette, can be "hue", "grey", "RdBu", "Blues", "npg", "aaas", etc.
More see |
... |
other parameters passing to |
Value
a (gg)plot object.
Examples
## Not run:
library(UCSCXenaTools)
expr_dataset <- "TCGA.LUAD.sampleMap/HiSeqV2_percentile"
cli_dataset <- "TCGA.LUAD.sampleMap/LUAD_clinicalMatrix"
id <- "KRAS"
cli_df <- XenaGenerate(
subset = XenaDatasets == "TCGA.LUAD.sampleMap/LUAD_clinicalMatrix"
) %>%
XenaQuery() %>%
XenaDownload() %>%
XenaPrepare()
# Use individual survival data
surv_df1 <- cli_df[, c("sampleID", "ABSOLUTE_Ploidy", "days_to_death", "vital_status")]
surv_df1$vital_status <- ifelse(surv_df1$vital_status == "DECEASED", 1, 0)
vis_identifier_grp_surv(surv_df = surv_df1)
# Use both dataset argument and vis_identifier_grp_surv(surv_df = surv_df1)
surv_df2 <- surv_df1[, c(1, 3, 4)]
vis_identifier_grp_surv(expr_dataset, id, surv_df = surv_df2)
vis_identifier_grp_surv(expr_dataset, id,
surv_df = surv_df2,
cutoff_mode = "Custom", cutpoint = c(25, 75)
)
## End(Not run)
Visualize Correlation for Multiple Identifiers
Description
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_multi_cor(
dataset,
ids,
samples = NULL,
matrix.type = c("full", "upper", "lower"),
type = c("parametric", "nonparametric", "robust", "bayes"),
partial = FALSE,
sig.level = 0.05,
p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",
"none"),
color_low = "#E69F00",
color_high = "#009E73",
...
)
Arguments
dataset |
the dataset to obtain identifiers. |
ids |
the molecule identifiers. |
samples |
default is |
matrix.type |
Character, |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
partial |
Can be |
sig.level |
Significance level (Default: |
p.adjust.method |
Adjustment method for p-values for multiple
comparisons. Possible methods are: |
color_low |
the color code for lower value mapping. |
color_high |
the color code for higher value mapping. |
... |
other parameters passing to ggstatsplot::ggcorrmat. |
Value
a (gg)plot object.
Examples
## Not run:
dataset <- "TcgaTargetGtex_rsem_isoform_tpm"
ids <- c("TP53", "KRAS", "PTEN")
vis_identifier_multi_cor(dataset, ids)
## End(Not run)
Visualize Single Gene Expression in Anatomy Location
Description
Visualize Single Gene Expression in Anatomy Location
Usage
vis_pancan_anatomy(
Gene = "TP53",
Gender = c("Female", "Male"),
data_type = "mRNA",
option = "D",
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Gender |
a string, "Female" (default) or "Male". |
data_type |
choose gene profile type, including "mRNA","transcript","methylation","miRNA","protein","cnv" |
option |
A character string indicating the color map option to use. Eight options are available:
|
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Visualize molecular profile in PCAWG
Description
Visualize molecular profile in PCAWG
Usage
vis_pcawg_dist(
Gene = "TP53",
Mode = c("Boxplot", "Violinplot"),
data_type = "mRNA",
Show.P.value = TRUE,
Show.P.label = TRUE,
Method = c("wilcox.test", "t.test"),
values = c("#DF2020", "#DDDF21"),
draw_quantiles = c(0.25, 0.5, 0.75),
trim = TRUE,
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Mode |
"Boxplot" or "Violinplot" to represent data |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
Show.P.value |
|
Show.P.label |
|
Method |
default method is wilcox.test |
values |
the color to fill tumor or normal |
draw_quantiles |
draw quantiles for violinplot |
trim |
whether trim the violin |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Examples
## Not run:
p <- vis_pcawg_dist(Gene = "TP53")
## End(Not run)
Visualize Gene-Gene Correlation in TCGA
Description
Visualize Gene-Gene Correlation in TCGA
Usage
vis_pcawg_gene_cor(
Gene1 = "CSF1R",
Gene2 = "JAK3",
data_type1 = "mRNA",
data_type2 = "mRNA",
cor_method = "spearman",
purity_adj = TRUE,
use_log_x = FALSE,
use_log_y = FALSE,
use_regline = TRUE,
dcc_project_code_choose = "BLCA-US",
use_all = FALSE,
filter_tumor = TRUE,
alpha = 0.5,
color = "#000000",
opt_pancan = .opt_pancan
)
Arguments
Gene1 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Gene2 |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type1 |
choose gene profile type for the first gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
data_type2 |
choose gene profile type for the second gene, including "mRNA","transcript","methylation","miRNA","protein","cnv_gistic2" |
cor_method |
correlation method |
purity_adj |
whether performing partial correlation adjusted by purity |
use_log_x |
if |
use_log_y |
if |
use_regline |
if |
dcc_project_code_choose |
select project code. |
use_all |
use all sample, default |
filter_tumor |
whether use tumor sample only, default |
alpha |
dot alpha. |
color |
dot color. |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Visualize Single Gene Univariable Cox Result in PCAWG
Description
Visualize Single Gene Univariable Cox Result in PCAWG
Usage
vis_pcawg_unicox_tree(
Gene = "TP53",
measure = "OS",
data_type = "mRNA",
threshold = 0.5,
values = c("grey", "#E31A1C", "#377DB8"),
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
measure |
a survival measure, e.g. "OS". |
data_type |
choose gene profile type, including "mRNA","transcript","methylation","miRNA","protein","cnv" |
threshold |
a expression cutoff, |
values |
the color to fill tumor or normal |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Examples
## Not run:
p <- vis_pcawg_unicox_tree(Gene = "TP53")
## End(Not run)
Visualize molecular profile difference between mutation and wild status of queried gene
Description
Visualize molecular profile difference between mutation and wild status of queried gene
Usage
vis_toil_Mut(
mut_Gene = "TP53",
Gene = NULL,
data_type = NULL,
Mode = c("Boxplot", "Violinplot"),
Show.P.value = TRUE,
Show.P.label = TRUE,
Method = c("wilcox.test", "t.test"),
values = c("#DF2020", "#DDDF21"),
draw_quantiles = c(0.25, 0.5, 0.75),
trim = TRUE,
opt_pancan = .opt_pancan
)
Arguments
mut_Gene |
the queried gene to determine grouping based on mutation and wild status |
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type |
choose gene profile type, including "mRNA", "transcript", "methylation", "miRNA". |
Mode |
choose one visualize mode to represent data |
Show.P.value |
|
Show.P.label |
|
Method |
default method is wilcox.test |
values |
the color to fill mutation or wild status |
draw_quantiles |
draw quantiles for violinplot |
trim |
whether to trim the violin |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object or a tibble data.frame
Examples
## Not run:
p <- vis_toil_Mut(mut_Gene = "TP53")
p <- vis_toil_Mut(mut_Gene = "TP53", Gene = "TNF")
p <- vis_toil_Mut(mut_Gene = "TP53", Gene = "hsa-let-7d-3p", data_type = "miRNA")
## End(Not run)
Visualize molecular profile difference between mutation and wild status of queried gene in Single Cancer Type
Description
Visualize molecular profile difference between mutation and wild status of queried gene in Single Cancer Type
Usage
vis_toil_Mut_cancer(
mut_Gene = "TP53",
Gene = NULL,
data_type = NULL,
Mode = c("Dotplot", "Violinplot"),
Show.P.value = TRUE,
Show.P.label = TRUE,
Method = c("wilcox.test", "t.test"),
values = c("#DF2020", "#DDDF21"),
draw_quantiles = c(0.25, 0.5, 0.75),
trim = TRUE,
Cancer = "ACC",
opt_pancan = .opt_pancan
)
Arguments
mut_Gene |
the queried gene to determine grouping based on mutation and wild status |
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
data_type |
choose gene profile type, including "mRNA", "transcript", "methylation", "miRNA". |
Mode |
choose one visualize mode to represent data |
Show.P.value |
|
Show.P.label |
|
Method |
default method is wilcox.test |
values |
the color to fill mutation or wild status |
draw_quantiles |
draw quantiles for violinplot |
trim |
whether to trim the violin |
Cancer |
select cancer cohort(s). |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object or a tibble data.frame.
Visualize Pan-cancer TPM (tumor (TCGA) vs Normal (TCGA & GTEx))
Description
Visualize Pan-cancer TPM (tumor (TCGA) vs Normal (TCGA & GTEx))
Usage
vis_toil_TvsN(
Gene = "TP53",
Mode = c("Boxplot", "Violinplot"),
data_type = "mRNA",
Show.P.value = TRUE,
Show.P.label = TRUE,
Method = c("wilcox.test", "t.test"),
values = c("#DF2020", "#DDDF21"),
TCGA.only = FALSE,
draw_quantiles = c(0.25, 0.5, 0.75),
trim = TRUE,
include.Tumor.only = FALSE,
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Mode |
"Boxplot" or "Violinplot" to represent data |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
Show.P.value |
|
Show.P.label |
|
Method |
default method is wilcox.test |
values |
the color to fill tumor or normal |
TCGA.only |
include samples only from TCGA dataset |
draw_quantiles |
draw quantiles for violinplot |
trim |
whether trim the violin |
include.Tumor.only |
if |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Examples
## Not run:
p <- vis_toil_TvsN(Gene = "TP53", Mode = "Violinplot", Show.P.value = FALSE, Show.P.label = FALSE)
p <- vis_toil_TvsN(Gene = "TP53", Mode = "Boxplot", Show.P.value = FALSE, Show.P.label = FALSE)
## End(Not run)
Visualize Gene TPM in Single Cancer Type (Tumor (TCGA) vs Normal (TCGA & GTEx))
Description
Visualize Gene TPM in Single Cancer Type (Tumor (TCGA) vs Normal (TCGA & GTEx))
Usage
vis_toil_TvsN_cancer(
Gene = "TP53",
Mode = c("Violinplot", "Dotplot"),
data_type = "mRNA",
Show.P.value = FALSE,
Show.P.label = FALSE,
Method = "wilcox.test",
values = c("#DF2020", "#DDDF21"),
TCGA.only = FALSE,
Cancer = "ACC",
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
Mode |
"Boxplot" or "Violinplot" to represent data |
data_type |
choose gene profile type, including "mRNA", "transcript", "protein", "mutation", "cnv", "methylation", "miRNA". |
Show.P.value |
|
Show.P.label |
|
Method |
default method is wilcox.test |
values |
the color to fill tumor or normal |
TCGA.only |
include samples only from TCGA dataset |
Cancer |
select cancer cohort(s). |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object.
Visualize Single Gene Univariable Cox Result from Toil Data Hub
Description
Visualize Single Gene Univariable Cox Result from Toil Data Hub
Usage
vis_unicox_tree(
Gene = "TP53",
measure = "OS",
data_type = "mRNA",
threshold = 0.5,
values = c("grey", "#E31A1C", "#377DB8"),
opt_pancan = .opt_pancan
)
Arguments
Gene |
a molecular identifier (e.g., "TP53") or a formula specifying
genomic signature ( |
measure |
a survival measure, e.g. "OS". |
data_type |
choose gene profile type, including "mRNA","transcript","methylation","miRNA","protein","cnv" |
threshold |
a expression cutoff, |
values |
the color to fill tumor or normal |
opt_pancan |
specify one dataset for some molercular profiles |
Value
a ggplot
object
Examples
## Not run:
p <- vis_unicox_tree(Gene = "TP53")
## End(Not run)