This is a basic example which shows you how easy it is to generate
data with {TidyDensity}
:
library(TidyDensity)
library(dplyr)
library(ggplot2)
tidy_normal()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 1.16 -3.82 0.000358 0.876 1.16
#> 2 1 2 -0.455 -3.65 0.00103 0.325 -0.455
#> 3 1 3 -0.266 -3.47 0.00257 0.395 -0.266
#> 4 1 4 -0.434 -3.30 0.00562 0.332 -0.434
#> 5 1 5 1.48 -3.12 0.0108 0.931 1.48
#> 6 1 6 1.67 -2.95 0.0184 0.953 1.67
#> 7 1 7 2.49 -2.77 0.0279 0.994 2.49
#> 8 1 8 -1.40 -2.60 0.0383 0.0810 -1.40
#> 9 1 9 0.0453 -2.42 0.0490 0.518 0.0453
#> 10 1 10 -0.821 -2.25 0.0602 0.206 -0.821
#> # ℹ 40 more rows
An example plot of the tidy_normal
data.
We can also take a look at the plots when the number of simulations is greater than nine. This will automatically turn off the legend as it will become too noisy.