%\VignetteIndexEntry{Beta-Binomial Distribution} %\VignetteKeywords{TailRank,beta binomial distribution} %\VignetteDepends{TailRank} %\VignettePackage{TailRank} \documentclass{article} \usepackage{hyperref} \newcommand{\Rfunction}[1]{{\texttt{#1}}} \newcommand{\Robject}[1]{{\texttt{#1}}} \newcommand{\Rpackage}[1]{{\textit{#1}}} \title{The Beta-Binomial Distribution} \author{Kevin R. Coombes} \begin{document} \maketitle \tableofcontents \section{Introduction} This vignette documents the beta-binomial distribution, which is included in the \Rpackage{TailRank} package <>= library(TailRank) @ Mathematically, the beta-binomial distribution has parameters $N$, $u$, and $v$ that determine the density function $$ {N \choose x} Beta(x+u, N-x+v)/Beta(u,v). $$ Statistically, one can think of this distribution as a hierarchical model, starting with a binomial distribution $Binom(x, N, \theta)$ whose success parameter $\theta$ comes from a beta distribution, $\theta \sim Beta(x, u, v)$. This distribution has a larger variance than the binomial distribution with a fixed (known) parameter $\theta$. We provide the usual set of functions to implement a distribution: \begin{itemize} \item \Rfunction{dbb} is the distribution function. \item \Rfunction{pbb} is the cumulative distribution function. \item \Rfunction{qbb} is the quantile function. \item \Rfunction{rbb} is the random-sample function. \end{itemize} We start by comparing the distributions of a binomial distribution and a beta-binomial distribution. <>= N <- 20 u <- 3 v <- 10 p <- u/(u+v) x <- 0:N y <- dbinom(x, N, p) yy <- dbb(x, N, u, v) @ <>= barplot(t(matrix(c(y, yy), ncol=2)), beside=TRUE, col=c("blue", "red")) legend("topright", c("Binomial", "Beta-Binomial"), col=c("blue", "red"), pch=15) @ Now we sample data from each of these distributions. <<>>= set.seed(561662) r <- rbinom(1000, N, p) rr <- rbb(1000, N, u, v) mean(r) mean(rr) var(r) var(rr) sd(r) sd(rr) @ \end{document}