
Package ‘TGS’
January 20, 2025

Version 1.0.1

Title Rapid Reconstruction of Time-Varying Gene Regulatory Networks

Description Rapid advancements in high-throughput gene sequencing
technologies have resulted in genome-scale time-series datasets.
Uncovering the underlying temporal sequence of gene regulatory events
in the form of time-varying gene regulatory networks demands
accurate and computationally efficient algorithms. Such an
algorithm is 'TGS'. It is proposed in Saptarshi Pyne, Alok Ranjan
Kumar, and Ashish Anand. Rapid reconstruction of time-varying
gene regulatory networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 17(1):278{291, Jan-Feb 2020. The TGS
algorithm is shown to consume only 29 minutes for a microarray
dataset with 4028 genes. This package provides an implementation
of the TGS algorithm and its variants.

License CC BY-NC-SA 4.0

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

biocViews NetworkInference, GraphAndNetwork, Network, GeneExpression,
Microarray, SystemsBiology, Software

URL https://www.biorxiv.org/content/early/2018/06/14/272484,

https://github.com/sap01/TGS

BugReports https://github.com/sap01/TGS/issues

Imports rjson, bnstruct, ggm, foreach, doParallel, minet (>= 3.38.0)

Suggests R.rsp, testthat (>= 2.1.0), knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Saptarshi Pyne [aut, cre] (<https://orcid.org/0000-0001-9710-6749>),
Manan Gupta [aut],
Alok Kumar [aut],
Ashish Anand [aut] (<https://orcid.org/0000-0002-0024-3358>)

1

https://www.biorxiv.org/content/early/2018/06/14/272484
https://github.com/sap01/TGS
https://github.com/sap01/TGS/issues
https://orcid.org/0000-0001-9710-6749
https://orcid.org/0000-0002-0024-3358

2 LearnTgs

Maintainer Saptarshi Pyne <saptarshipyne01@gmail.com>

Repository CRAN

Date/Publication 2020-05-07 13:00:21 UTC

Contents

TGS-package . 2
LearnTgs . 2

Index 8

TGS-package TGS: A package for Rapid Reconstruction of Time-Varying Gene Reg-
ulatory Networks

Description

The TGS package provides an implementation of the TGS algorithm and its variants. This algorithm
reconstructs time-varying gene regulatory networks from time-series gene expression datasets. For
algorithmic details, please see: Saptarshi Pyne, Alok Ranjan Kumar, and Ashish Anand. Rapid re-
construction of time-varying gene regulatory networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 17(1):278–291, Jan–Feb 2020.

The LearnTgs function

Please call TGS::LearnTgs() to invoke the TGS algorithm. See the manual for the required param-
eters.

LearnTgs Implement the TGS Algorithm

Description

The TGS algorithm takes a time-series gene expression dataset as input. It analyses the data and
reconstructs the underlying temporal sequence of gene regulatory events. The reconstructed output
is given in the form of time-varying gene regulatory networks (GRNs). The TGS algorithm is
extremely time-efficient and hence suitable for processing large datasets with hundreds to thousands
of genes. More details about the algorithm can be found at Saptarshi Pyne, Alok Ranjan Kumar,
and Ashish Anand. Rapid reconstruction of time-varying gene regulatory networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 17(1):278–291, Jan–Feb 2020.

LearnTgs 3

Usage

LearnTgs(
isfile = 0,
json.file = "",
input.dirname = "",
input.data.filename = "",
num.timepts = 2,
true.net.filename = "",
input.wt.data.filename = "",
is.discrete = TRUE,
num.discr.levels = 2,
discr.algo = "",
mi.estimator = "mi.pca.cmi",
apply.aracne = FALSE,
clr.algo = "CLR",
max.fanin = 14,
allow.self.loop = TRUE,
scoring.func = "BIC",
output.dirname = ""

)

Arguments

isfile Numeric. 1 or 0. 1 if input arguments are given in a json file. Otherwise, 0.

json.file Character string. Absolute path to the JSON file if isfile = 1.

input.dirname Character string. Absolute path to the directory where input files are kept. By
default, the current working directory.

input.data.filename

Character string. Name of the file containing the input data. It can either be a
’.tsv’ file or an ’.RData’ file.

• If it is a ’.tsv’ file, the first column should have the time point IDs. The only
exception is the (1, 1)-th cell. This cell should be reserved for the column
header. The column header can be anything, such as - ’Time’. The first row,
excluding the (1, 1)-th cell, must have the gene names. The rest of the cells
should contain the corresponding value. For example, the cell with row ID
’t1’ and column ID ’G2’ would represent the expression value of gene ’G2’
at time point ’t1’.

• If it is an ’.RData’ file, the underlying object should be a matrix named
’input.data’. In ’input.data’, the row names must represent the time point
IDs. On the other hand, the column names must represent the gene names.
Therefore, the (i, j)-th cell of the matrix contains the expression value of
the j-th gene at the i-th time point.

For both ’.tsv’ and ’.RData’ input, multiple rows with the same time point ID
represent multiple replicates at the same time point. In other words, these rows
belong to the same time point in different time series. The time points belonging
to the same time series must be together and in ascending order. An exemplary

4 LearnTgs

dataset with three genes {G1, G2, G3}, two time points {t1, t2} and two time
series is shown below.

Time G1 G2 G3
t1 0.8272480342 0.7257430901 0.3894130418
t2 0.6542518342 0.6470658823 0.5088904888
t1 0.3519554463 0.3551279726 0.3207993604
t2 0.4871730974 0.3706990326 0.447523615

num.timepts Numeric. Positive integer greater than 1. Number of distinct time points.

true.net.filename

Character string. Name of the file containing the true network. In case it is non-
empty, the name should refer to an ’.RData’ file. The ’.RData’ file must have an
object named ’true.net.adj.matrix’. The object can either be a matrix or a list.

• If the object is a matrix, then it represents the true summary GRN. The row
names and column names should be the gene names. Each cell can contain
a value of 1 or 0. If the (i, j)-th cell contains 1, then there exists an edge
from the i-th gene to the j-th gene. Otherwise, the edge does not exist. An
example with three genes {G1, G2, G3} is given below.

G1 G2 G3
G1 0 1 0
G2 0 0 0
G3 1 0 0

• If the object is a list, then it represents the true time-varying GRNs. The
length of the list must be equal to the number of time intervals, which is
(num.timepts - 1). Each element in the list should be a matrix. The p-
th matrix represents the true GRN corresponding to the p-th time interval.
The row names and column names should be the gene names. Each cell can
contain a value of 1 or 0. If the (i, j)-th cell contains 1, then there exists an
edge from the i-th gene to the j-th gene. Otherwise, the edge does not exist.

input.wt.data.filename

Character string. Name of the file containing the Wild Type expressions of the
genes. If non-empty, then must be a ’.tsv’ file. The first row should contain the
names of the genes. Only exception is the (1, 1)-th cell which should be empty.
The second row should have the wild type expressions. Therefore, the (2, j)-
th cell must contain the wild type expression of the j-th gene. Again the only
exception is the (2, 1)-th cell which should be empty. An example with three
genes {G1, G2, G3} is given below.

<empty> G1 G2 G3
<empty> 0.5298713 0.5174261 0.8181522

is.discrete Logical. TRUE or FALSE. TRUE if the input data is discrete. Otherwise,
FALSE.

LearnTgs 5

num.discr.levels

Numeric. Positive integer greater than 1. Number of discrete levels that each
gene has (if the input data is discrete) or each gene should have (if the input data
needs to be discretised).

discr.algo Character string. Name of the discretisation algorithm to be used when the
input data needs to be discretised. The available algorithms are – ’discretize-
Data.2L.Tesla’ and ’discretizeData.2L.wt.l’. If you choose algorithm ’discretize-
Data.2L.wt.l’, please provide the wild type data using argument input.wt.data.filename.

mi.estimator Character string. Name of the algorithm for estimating mutual informations.
There is only one algorithm available at this moment. It is ’mi.pca.cmi’.

apply.aracne Logical. TRUE or FALSE. TRUE if you wish to apply ARACNE for refining
the mutual information matrix. Otherwise, FALSE.

clr.algo Character string. Name of the context likelihood relatedness (CLR) algorithm
to use. The available algorithms are – ’CLR’, ’CLR2’, ’CLR2.1’, ’CLR3’ and
’spearman’.

max.fanin Numeric. Positive integer. Maximum number of regulators each gene can have.
allow.self.loop

Logical. TRUE or FALSE. TRUE if you wish to allow self loops. Otherwise,
FALSE.

scoring.func Character string. Name of the scoring function to use. At this moment, the only
available option is ’BIC’.

output.dirname Character string. File path to a directory where output files are to be saved.
There are three options. Option 1: It can be the absolute path to an existing
directory. Option 2: It can also be the absolute path to a non-existing directory.
In this case, the directory will be created. Option 3 (default): If provided an
empty string, then it will be the current working directory.

Details

The function does not return any values. Instead, it outputs a set of files and saves them under the
directory specified by output.dirname. The output files are described in Section ’Value’.

Value

input.data.discr.RData Discretised version of the input data. This file is created only if the input
data is not discretised as specified by input argument ’is.discrete’.

mut.info.matrix.RData Mutual information matrix of the given genes. This RData file contains a
matrix named ’mut.info.matrix’. The (i, j)-th cell of the matrix represents the mutual informa-
tion between the i-th and j-th genes. This is a symmetric matrix.

mi.net.adj.matrix.wt.RData Weighted Mutual information network of the given genes. This RData
file contains a matrix named ’mi.net.adj.matrix.wt’. The (i, j)-th cell of the matrix represents
the weight of the edge from the i-th gene to the j-th gene. The edge weight is a non-negative
real number.

mi.net.adj.matrix.RData Unweighted Mutual information network of the given genes. This RData
file contains a matrix named ’mi.net.adj.matrix’. Each cell of the matrix contains a value of 1
or 0. If the (i, j)-th cell contains 1, then there exists an edge from the i-th gene to the j-th gene.
Otherwise, the edge does not exist.

6 LearnTgs

unrolled.DBN.adj.matrix.list.RData Reconstructed time-varying GRNs. This RData file con-
tains a list named ’unrolled.DBN.adj.matrix.list’. The length of the list is equal to the total
number of time intervals, which is (num.timepts - 1). Each element in the list is a network
adjacency matrix. The p-th element in the list represents the adjacency matrix of the GRN
corresponding to the p-th time interval. In this adjacency matrix, each cell contains a value of
1 or 0. If the (i, j)-th cell contains 1, then there exists a directed edge from the i-th gene to the
j-th gene. Otherwise, the edge does not exist.

di.net.adj.matrix.RData Rolled GRN. This RData file contains a matrix named ’di.net.adj.matrix’.
Each cell in the matrix contains a value of 1 or 0. If the (i, j)-th cell contains 1, then there
exists an edge from the i-th gene to the j-th gene. Otherwise, the edge does not exist.

net.sif Rolled GRN in the SIF format compatible with Cytoscape.

Result.RData Correctness metrics. This file is created only if true network is given through input
argument ’true.net.filename’. Inside this RData file, there is a matrix named ’Result’. The
columns represent the correctness metrics, such as - TP (number of true positive predictions)
and FP (number of false positive predictions). The rows depend upon the nature of the true
network. If the true network is time-varying GRNs, then the number of rows is equal to
the number of time intervals. In that case, the p-th row contains the correctness metrics of
the reconstructed GRN corresponding to the p-th time interval. On the other hand, if the
true network is a summary GRN, then there exists only one row. This row represents the
correctness metrics of the rolled GRN.

output.txt Console output.

sessionInfo.txt R session information.

Examples

Not run:
TGS::LearnTgs(
isfile = 0,
json.file = '',
input.dirname = 'C:/GitHub/TGS/inst/extdata',
input.data.filename = 'InSilicoSize10-Yeast1-trajectories.tsv',
num.timepts = 21,
true.net.filename = 'DREAM3GoldStandard_InSilicoSize10_Yeast1_TrueNet.RData',
input.wt.data.filename = 'InSilicoSize10-Yeast1-null-mutants.tsv',
is.discrete = FALSE,
num.discr.levels = 2,
discr.algo = 'discretizeData.2L.wt.l',
mi.estimator = 'mi.pca.cmi',
apply.aracne = FALSE,
clr.algo = 'CLR',
max.fanin = 14,
allow.self.loop = FALSE,
scoring.func = 'BIC',
output.dirname = 'C:/GitHub/TGS/inst/extdata/Output_Ds10n')

TGS::LearnTgs(
isfile = 0,
json.file = '',
input.dirname = 'C:/GitHub/TGS/inst/extdata',

LearnTgs 7

input.data.filename = 'edi-data-10n.tsv',
num.timepts = 21,
true.net.filename = 'edi.net.10.adj.mx.RData',
input.wt.data.filename = '',
is.discrete = FALSE,
num.discr.levels = 2,
discr.algo = 'discretizeData.2L.Tesla',
mi.estimator = 'mi.pca.cmi',
apply.aracne = FALSE,
clr.algo = 'CLR',
max.fanin = 14,
allow.self.loop = TRUE,
scoring.func = 'BIC',
output.dirname = 'C:/GitHub/TGS/inst/extdata/Output_Ed10n')

End(Not run)

Index

LearnTgs, 2

TGS (TGS-package), 2
TGS-package, 2

8

	TGS-package
	LearnTgs
	Index

