## ----custom, echo = FALSE, results ='hide', message = FALSE, warning = FALSE---- set.seed(5) library('knitr') ## ------------------------------------------------------------------------ library('TBFmultinomial') data("VAP_data") dim(VAP_data) head(VAP_data, 10) table(VAP_data$outcome) ## ------------------------------------------------------------------------ full <- outcome ~ ns(day, df = 4) + gender + type + SAPSadmission + SOFA class(full) ## ------------------------------------------------------------------------ PMP_LEB_flat <- PMP(fullModel = full, data = VAP_data, discreteSurv = TRUE) ## ------------------------------------------------------------------------ class(PMP_LEB_flat) as.data.frame(PMP_LEB_flat) ## ------------------------------------------------------------------------ postInclusionProb(PMP_LEB_flat) ## ------------------------------------------------------------------------ # we first fit the model: model_full_nnet <- multinom(formula = full, data = VAP_data, maxit = 150, trace = FALSE) # retrieve the g estimate of the full model g_est <- tail(PMP_LEB_flat$G, 1) # and then apply the function test_CSVS_nnet <- CSVS(g = g_est, model = model_full_nnet, discreteSurv = TRUE, package = 'nnet') ## ----CSVS1, fig.keep='last', fig.align='center', fig.cap = 'Absolute values of the shrunken standardized coefficients before and after CSVS.'---- res <- plot_CSVS(CSVSobject = test_CSVS_nnet, namesVar = NULL, shrunken = TRUE, standardized = TRUE, numberIntercepts = 5) ## ------------------------------------------------------------------------ pips_landmark <- PIPs_by_landmarking(fullModel = full, data = VAP_data, discreteSurv = TRUE, numberCores = 1, landmarkLength = 4, lastlandmark = 20, timeVariableName = 'day') ## ----PIPs_landmark, fig.keep='last', fig.align='center', fig.cap = 'The posterior inclusion probabilities for each landmark.'---- pips_matrix <- matrix(unlist(pips_landmark), nrow = length(pips_landmark), byrow = TRUE) colnames(pips_matrix) <- names(pips_landmark[[1]]) par(mfrow = c(2,2), las = 1) for(i in 1:ncol(pips_matrix)){ plot(seq(0, 20, by = 4), pips_matrix[ , i], type = 'b', xlab = 'Landmark (in days)', pch = 19, ylab = 'Probability', main = colnames(pips_matrix)[i], ylim = c(0, 1)) abline(h = .5, col = 'blue', lty = 2) }