---
title: "graph-outputs"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{graph-outputs}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 12,
fig.height = 8,
fig.asp = 0.8,
out.width = "80%",
dev.args = list(png = list(type = "cairo"))
)
```
The TAD package provides some Graph outputs functions
```{r setup}
weights <- TAD::AB[, 5:102]
weights_factor <- TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")]
trait_data <- log(TAD::trait[["SLA"]][seq_len(ncol(weights))])
aggregation_factor_name <- c("Year", "Bloc")
statistics_factor_name <- c("Treatment")
regenerate_abundance_df <- TRUE
regenerate_weighted_moments_df <- TRUE
regenerate_stat_per_obs_df <- TRUE
regenerate_stat_per_rand_df <- TRUE
regenerate_stat_skr_df <- TRUE
randomization_number <- 100
seed <- 1312
significativity_threshold <- c(0.025, 0.975)
lin_mod <- "lm"
slope_distance <- TAD:::CONSTANTS$SKEW_UNIFORM_SLOPE_DISTANCE
intercept_distance <- TAD:::CONSTANTS$SKEW_UNIFORM_INTERCEPT_DISTANCE
future::plan(future::multisession)
results <- TAD::launch_analysis_tad(
weights = weights,
weights_factor = weights_factor,
trait_data = trait_data,
randomization_number = randomization_number,
aggregation_factor_name = aggregation_factor_name,
statistics_factor_name = statistics_factor_name,
seed = seed,
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
regenerate_stat_skr_df = TRUE,
significativity_threshold = significativity_threshold,
lin_mod = lin_mod,
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
future::plan(future::sequential)
```
## moments_graph function
```{r}
str(results$weighted_moments)
str(results$statistics_per_observation)
moments_graph <- TAD::moments_graph(
moments_df = results$weighted_moments,
statistics_per_observation = results$statistics_per_observation,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159")
)
moments_graph
```
## skr_graph function
```{r}
str(results$weighted_moments)
skr_graph <- TAD::skr_graph(
moments_df = results$weighted_moments,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
skr_graph
```
## skr_param_graph function
```{r}
str(results$ses_skr)
skr_param_graph <- TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
skr_param_graph
```
## SKR graph when skew-non-uniform distribution
```{r}
results <- TAD::launch_analysis_tad(
weights = weights,
weights_factor = weights_factor,
trait_data = trait_data,
randomization_number = randomization_number,
aggregation_factor_name = aggregation_factor_name,
statistics_factor_name = statistics_factor_name,
seed = seed,
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
regenerate_stat_skr_df = TRUE,
significativity_threshold = significativity_threshold,
lin_mod = lin_mod,
slope_distance = slope_distance,
intercept_distance = (intercept_distance <- 1.90)
)
str(results$ses_skr)
skr_param_graph <- TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = 1,
intercept_distance = intercept_distance
)
skr_param_graph
```
# Output PNG, JPEG or SVG graphs
Here is a simple code to generate all graphs based on their name:
```R
TAD::moments_graph(
moments_df = results$weighted_moments,
statistics_per_observation = results$statistics_per_observation,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = "./moments_graph.png",
do_return = FALSE
)
TAD::skr_graph(
moments_df = results$weighted_moments,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = "./skr_graph.png",
slope_distance = 1,
intercept_distance = 1.86,
do_return = FALSE
)
TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = 1,
intercept_distance = 1.86,
save_skr_param_graph = "./skr_param_graph.png",
do_return = FALSE
)
```