--- title: "Introduction to Ssarkartrim Package" author: "Shouhardyo Sarkar,The University of Iowa,USA" date: "`Nov 8,2025`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to Ssarkartrim} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## Overview The `Ssarkartrim` package provides a robust trimmed-k mean estimator for numeric data. It is designed to reduce the influence of outliers by removing the `k` smallest and `k` largest values before computing the mean. This vignette walks through installation, usage, and interpretation of the function. --- ## Installation To install the package from source: ```r install.packages("Ssarkartrim_1.0.0.tar.gz", repos = NULL, type = "source") library(Ssarkartrim) ## Function: `kTrimMean()` kTrimMean(dat, k) `dat` : A numeric vector. `k` : Number of smallest and largest values to trim. Returns the trimmed-k mean of the data. If 2k >= length(dat), the function returns NA with a warning ## Example 1 : set.seed(5400) dat <- rexp(20, rate = 0.5) kTrimMean(dat, k = 2) ## Output [1] 1.592987 This trims the 2 smallest and 2 largest values from `dat` and computes the mean of the remaining 16 values. ## Comparison with Mean and Median mean(dat) median(dat) kTrimMean(dat, k = 2) This shows how `kTrimMean()` provides a middle ground: `mean()` is sensitive to outliers. `median()` is robust but may ignore distribution shape. `kTrimMean()` trims extremes while preserving central tendency. ## Example 2 : small_dat <- c(1, 2, 3, 100, 200) kTrimMean(small_dat, k = 1) This trims the the lowest and largest values ## Edge Case - Example 3: short_dat <- c(5, 10) kTrimMean(short_dat, k = 1) ## Output [1] NA Warning message: Not enough data to trim k smallest and largest values. This shows the function’s built-in safeguard when trimming exceeds available data. ## Use Cases Robust estimation in small samples Outlier-resistant summary statistics Teaching robust statistics in coursework Comparing estimators in simulation studies ## Package Development Notes This package was built using: devtools::create() Roxygen2 for documentation document() to generate .Rd files R CMD build and R CMD check --as-cran for validation Rd2pdf to generate the manual usethis::use_vignette() to create this vignette ## Author Shouhardyo Sarkar, Department of Statistics and Actuarial Science, Schaeffer Hall, Iowa City , IA 52240 The University of Iowa,USA Email: shouhardyo-sarkar@uiowa.edu ## Conclusion The Ssarkartrim package offers a simple, reproducible, and pedagogically useful implementation of the trimmed-k mean.