---
title: "toy-example"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{toy-example}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
#####################
#### TOY EXAMPLE ####
#####################
This script shows a toy example of usage of SparseFunClust (without alignment).
# Generate the data
```{r}
library(SparseFunClust)
set.seed(24032023)
n <- 50
x <- seq(0,1,len=500)
out <- generate.data.FV17(n, x)
data <- out$data
trueClust <- out$true.partition
matplot(x, t(data), type='l', col=trueClust,
xlab = 'x', ylab = 'data', main = 'Simulated data')
```
# Run Sparse Functional Clustering (no alignment)
```{r}
K <- 2 # run with 2 groups only
method <- 'kmea' # version with K-means clustering
tuning.m <- FALSE # don't perform tuning of the sparsity parameter (faster)
result <- SparseFunClust(data, x, K = K, do.alignment = FALSE,
clust.method = method, tuning.m = tuning.m)
```
# Plot / explore results
```{r}
table(trueClust,result$labels)
cer(trueClust,result$labels)
```
```{r}
matplot(x,t(data),type='l',lty=1,col=result$labels+1,ylab='',
main='clustering results')
lines(x,colMeans(data[which(result$labels==1),]),lwd=2)
lines(x,colMeans(data[which(result$labels==2),]),lwd=2)
plot(x,result$w,type='l',lty=1,lwd=2,ylab='',
main='estimated weighting function')
abline(v=0.5)
```