## ----setup, include=FALSE, cache=FALSE---------------------------------------- require(knitr) opts_chunk$set( dev="pdf", fig.path="figures/", fig.height=3, fig.width=4, out.width=".47\\textwidth", fig.keep="high", fig.show="hold", fig.align="center", prompt=TRUE, # show the prompts; but perhaps we should not do this comment=NA # turn off commenting of ouput (but perhaps we should not do this either ) ## ----pvalues, echo=FALSE, message=FALSE--------------------------------------- print.pval = function(pval) { threshold = 0.0001 return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""), ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""), paste("p=", round(pval, 3), sep="")))) } ## ----setup2,echo=FALSE,message=FALSE------------------------------------------ require(Sleuth3) require(mosaic) trellis.par.set(theme=col.mosaic()) # get a better color scheme set.seed(123) # this allows for code formatting inline. Use \Sexpr{'function(x,y)'}, for exmaple. knit_hooks$set(inline = function(x) { if (is.numeric(x)) return(knitr:::format_sci(x, 'latex')) x = as.character(x) h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize')) h = gsub("([_#$%&])", "\\\\\\1", h) h = gsub('(["\'])', '\\1{}', h) gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h) }) showOriginal=FALSE showNew=TRUE ## ----install_mosaic,eval=FALSE------------------------------------------------ # install.packages('mosaic') # note the quotation marks ## ----load_mosaic,eval=FALSE--------------------------------------------------- # require(mosaic) ## ----install_Sleuth3,eval=FALSE----------------------------------------------- # install.packages('Sleuth3') # note the quotation marks ## ----load_Sleuth3,eval=FALSE-------------------------------------------------- # require(Sleuth3) ## ----eval=TRUE---------------------------------------------------------------- trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice options(digits=3) ## ----------------------------------------------------------------------------- case0601$Handicap = relevel(case0601$Handicap, ref="Amputee") summary(case0601) favstats(Score ~ Handicap, data=case0601) ## ----------------------------------------------------------------------------- with(subset(case0601, Handicap=="None"), stem(Score, scale=2)) with(subset(case0601, Handicap=="Amputee"), stem(Score, scale=2)) with(subset(case0601, Handicap=="Crutches"), stem(Score, scale=1)) with(subset(case0601, Handicap=="Hearing"), stem(Score, scale=2)) with(subset(case0601, Handicap=="Wheelchair"), stem(Score, scale=2)) ## ----fig.height=8, fig.width=8------------------------------------------------ bwplot(Handicap ~ Score, data=case0601) ## ----fig.height=8, fig.width=8------------------------------------------------ densityplot(~ Score, groups=Handicap, auto.key=TRUE, data=case0601) ## ----------------------------------------------------------------------------- anova(lm(Score ~ Handicap, data=case0601)) ## ----------------------------------------------------------------------------- summary(lm(Score ~ Handicap, data=case0601)) ## ----------------------------------------------------------------------------- model.tables(aov(Score ~ Handicap, data=case0601)) ## ----------------------------------------------------------------------------- mean(Score ~ Handicap, data=case0601)-mean(~ Score, data=case0601) ## ----------------------------------------------------------------------------- TukeyHSD(aov(lm(Score ~ Handicap, data=case0601)), "Handicap", ordered=TRUE, c(0,1,-1,0,0), conf.level=0.95) ## ----echo=FALSE--------------------------------------------------------------- tuk = TukeyHSD(aov(lm(Score ~ Handicap, data=case0601)), "Handicap", ordered=TRUE, c(0,1,-1,0,0), conf.level=0.95) ## ----------------------------------------------------------------------------- require(gmodels) fit.contrast(lm(Score ~ Handicap, data=case0601), "Handicap", c(-1, 1, -1, 0, 1), conf.int=0.95) ## ----------------------------------------------------------------------------- fit.contrast(lm(Score ~ Handicap, data=case0601), "Handicap", c(-0.5, 0.5, -0.5, 0, 0.5), conf.int=0.95) ## ----------------------------------------------------------------------------- require(agricolae) LSD.test(aov(lm(Score ~ Handicap, data=case0601)), "Handicap") # LSD HSD.test(aov(lm(Score ~ Handicap, data=case0601)), "Handicap") # Tukey-Kramer LSD.test(aov(lm(Score ~ Handicap, data=case0601)), "Handicap", p.adj=c("bonferroni")) # Bonferroni scheffe.test(aov(lm(Score ~ Handicap, data=case0601)), "Handicap") # Scheffe ## ----------------------------------------------------------------------------- summary(case0602) favstats(Percentage ~ Pair, data=case0602) ## ----fig.height=8, fig.width=8------------------------------------------------ bwplot(Pair ~ Percentage, data=case0602) ## ----fig.height=8, fig.width=8------------------------------------------------ densityplot(~ Percentage, groups=Pair, auto.key=TRUE, data=case0602) ## ----------------------------------------------------------------------------- anova(lm(Percentage ~ Pair, data=case0602)) ## ----------------------------------------------------------------------------- summary(lm(Percentage ~ Pair, data=case0602)) ## ----------------------------------------------------------------------------- model.tables(aov(Percentage ~ Pair, data=case0602)) ## ----------------------------------------------------------------------------- mean(Percentage ~ Pair, data=case0602)-mean(~ Percentage, data=case0602) ## ----------------------------------------------------------------------------- require(gmodels) lc = fit.contrast(lm(Percentage ~ Pair, data=case0602), "Pair", c(5, -3, 1, 3, -9, 3), conf.int=0.95); lc t=round(lc[, "t value"], 2); t pt(t, 78, lower.tail=TRUE) ## ----------------------------------------------------------------------------- mean(mean(Percentage ~ Pair, data=case0602)) t.test(mean(Percentage ~ Pair, data=case0602))