## ----setup, include=FALSE, cache=FALSE---------------------------------------- require(knitr) opts_chunk$set( dev="pdf", fig.path="figures/", fig.height=3, fig.width=4, out.width=".47\\textwidth", fig.keep="high", fig.show="hold", fig.align="center", prompt=TRUE, # show the prompts; but perhaps we should not do this comment=NA # turn off commenting of ouput (but perhaps we should not do this either ) ## ----pvalues, echo=FALSE, message=FALSE--------------------------------------- print.pval = function(pval) { threshold = 0.0001 return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""), ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""), paste("p=", round(pval, 3), sep="")))) } ## ----setup2,echo=FALSE,message=FALSE------------------------------------------ require(Sleuth3) require(mosaic) trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice set.seed(123) # this allows for code formatting inline. Use \Sexpr{'function(x,y)'}, for exmaple. knit_hooks$set(inline = function(x) { if (is.numeric(x)) return(knitr:::format_sci(x, 'latex')) x = as.character(x) h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize')) h = gsub("([_#$%&])", "\\\\\\1", h) h = gsub('(["\'])', '\\1{}', h) gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h) }) showOriginal=FALSE showNew=TRUE ## ----install_mosaic,eval=FALSE------------------------------------------------ # install.packages('mosaic') # note the quotation marks ## ----load_mosaic,eval=FALSE--------------------------------------------------- # require(mosaic) ## ----install_Sleuth3,eval=FALSE----------------------------------------------- # install.packages('Sleuth3') # note the quotation marks ## ----load_Sleuth3,eval=FALSE-------------------------------------------------- # require(Sleuth3) ## ----eval=FALSE--------------------------------------------------------------- # trellis.par.set(theme=col.mosaic()) # get a better color scheme # options(digits=3) ## ----------------------------------------------------------------------------- summary(case0501) favstats(Lifetime ~ Diet, data=case0501) ## ----------------------------------------------------------------------------- bwplot(Lifetime ~ Diet, data=case0501) # Display 5.1 ## ----fig.height=8, fig.width=8------------------------------------------------ densityplot(~ Lifetime, groups=Diet, auto.key=TRUE, data=case0501) ## ----eval=TRUE---------------------------------------------------------------- anova(lm(Lifetime ~ Diet, data=case0501)) ## ----------------------------------------------------------------------------- summary(lm(Lifetime ~ Diet, data=case0501)) ## ----a------------------------------------------------------------------------ require(gmodels) # N/N85 vs N/R50 fit.contrast(lm(Lifetime ~ Diet, data=case0501), "Diet", c(-1, 0, 1, 0, 0, 0), conf.int=0.95) ## ----b------------------------------------------------------------------------ # N/R50 vs R/R50 (b) fit.contrast(lm(Lifetime ~ Diet, data=case0501), "Diet", c(0, 0, -1, 0, 1, 0), conf.int=0.95) ## ----c------------------------------------------------------------------------ # N/R40 vs N/R50 (c) fit.contrast(lm(Lifetime ~ Diet, data=case0501), "Diet", c(0, -1, 1, 0, 0, 0), conf.int=0.95) # N/N85 vs N/R40 fit.contrast(lm(Lifetime ~ Diet, data=case0501), "Diet", c(-1, 1, 0, 0, 0, 0), conf.int=0.95) ## ----d------------------------------------------------------------------------ # N/R50 vs N/R50 lopro (d) fit.contrast(lm(Lifetime ~ Diet, data=case0501), "Diet", c(0, 0, -1, 0, 0, 1), conf.int=0.95) ## ----e------------------------------------------------------------------------ # N/N85 vs NP (e) fit.contrast(lm(Lifetime ~ Diet, data=case0501), "Diet", c(-1, 0, 0, 1, 0, 0), conf.int=0.95) ## ----------------------------------------------------------------------------- model.tables(aov(lm(Lifetime ~ Diet, data=case0501))) ## ----------------------------------------------------------------------------- mean(Lifetime ~ Diet, data=case0501)-mean(~ Lifetime, data=case0501) ## ----------------------------------------------------------------------------- df = length(case0501$Diet) - length(unique(case0501$Diet)); df sdvals = with(case0501, tapply(Lifetime, Diet, sd)); sdvals nvals = with(case0501, tapply(Lifetime, Diet, length)); nvals pooledsd = sum(sdvals*nvals)/sum(nvals); pooledsd ## ----fig.height=8, fig.width=8------------------------------------------------ aov1 = aov(lm(Lifetime ~ Diet, data=case0501)) plot(aov1, which=1) ## ----fig.height=8, fig.width=8------------------------------------------------ plot(aov1, which=2) plot(aov1, which=3) ## ----------------------------------------------------------------------------- case0502 = transform(case0502, Judge = factor(Judge, levels = c("Spock's", "A", "B", "C", "D", "E", "F"))) summary(case0502) case0502$Judge = with(case0502, as.factor(Judge)) favstats(Percent ~ Judge, data=case0502) ## ----------------------------------------------------------------------------- bwplot(Percent ~ Judge, data=case0502) # Display 5.5 (page 118) ## ----fig.height=8, fig.width=8------------------------------------------------ densityplot(~ Percent, groups=Judge, auto.key=TRUE, data=case0502) ## ----------------------------------------------------------------------------- aov1 = anova(lm(Percent ~ Judge, data=case0502)); aov1 ## ----------------------------------------------------------------------------- summary(lm(Percent ~ Judge, data=case0502)) ## ----------------------------------------------------------------------------- model.tables(aov(lm(Percent ~ Judge, data=case0502))) ## ----------------------------------------------------------------------------- with(subset(case0502, Judge!="Spock's"), anova(lm(Percent ~ Judge))) ## ----------------------------------------------------------------------------- case0502$twoJudge = as.character(case0502$Judge) case0502$twoJudge[case0502$Judge!="Spock's"] = "notspock" tally(twoJudge ~ Judge, format="count", data=case0502) ## ----------------------------------------------------------------------------- numdf1 = aov1["Residuals", "Df"]; numdf1 # Within ss1 = aov1["Residuals", "Sum Sq"]; ss1 # Within aov2 = anova(lm(Percent ~ as.factor(twoJudge), data=case0502)); aov2 df2 = aov2["Residuals", "Df"]; df2 # Spock and others ss2 = aov2["Residuals", "Sum Sq"]; ss2 # Spock and others Fstat = ((ss2 - ss1)/(df2 - numdf1)) / (ss1 / numdf1); Fstat 1-pf(Fstat, length(levels(case0502$Judge))-2, numdf1) ## ----------------------------------------------------------------------------- anova(lm(Percent ~ as.factor(Judge), data=case0502), lm(Percent ~ as.factor(twoJudge), data=case0502)) ## ----------------------------------------------------------------------------- # test all of the other judges vs. Spock's judge using a contrast page 118 fit.contrast(lm(Percent ~ Judge, data=case0502), "Judge", c(-6, 1, 1, 1, 1, 1, 1), conf.int=0.95) # calculate the 95% confidence interval for Dr. Spock's jury female composition page 118 estimable(lm(Percent ~ Judge, data=case0502), c(1,0,0,0,0,0,0), conf.int=0.95) ## ----------------------------------------------------------------------------- kruskal.test(Percent ~ Judge, data=case0502)