## ----setup, include=FALSE, cache=FALSE---------------------------------------- require(knitr) opts_chunk$set( dev="pdf", fig.path="figures/", fig.height=3, fig.width=4, out.width=".47\\textwidth", fig.keep="high", fig.show="hold", fig.align="center", prompt=TRUE, # show the prompts; but perhaps we should not do this comment=NA # turn off commenting of ouput (but perhaps we should not do this either ) ## ----pvalues, echo=FALSE, message=FALSE--------------------------------------- print.pval = function(pval) { threshold = 0.0001 return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""), ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""), paste("p=", round(pval, 3), sep="")))) } ## ----setup2,echo=FALSE,message=FALSE------------------------------------------ require(Sleuth3) require(mosaic) trellis.par.set(theme=col.mosaic()) # get a better color scheme set.seed(123) # this allows for code formatting inline. Use \Sexpr{'function(x,y)'}, for exmaple. knit_hooks$set(inline = function(x) { if (is.numeric(x)) return(knitr:::format_sci(x, 'latex')) x = as.character(x) h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize')) h = gsub("([_#$%&])", "\\\\\\1", h) h = gsub('(["\'])', '\\1{}', h) gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h) }) showOriginal=FALSE showNew=TRUE ## ----install_mosaic,eval=FALSE------------------------------------------------ # install.packages('mosaic') # note the quotation marks ## ----load_mosaic,eval=FALSE--------------------------------------------------- # require(mosaic) ## ----install_Sleuth3,eval=FALSE----------------------------------------------- # install.packages('Sleuth3') # note the quotation marks ## ----load_Sleuth3,eval=FALSE-------------------------------------------------- # require(Sleuth3) ## ----eval=TRUE---------------------------------------------------------------- trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice options(digits=3, show.signif.stars=FALSE) ## ----------------------------------------------------------------------------- summary(case0201) fav = favstats(Depth ~ Year, data=case0201); fav ## ----------------------------------------------------------------------------- bwplot(Year ~ Depth, data=case0201) ## ----------------------------------------------------------------------------- densityplot(~ Depth, groups=Year, auto.key=TRUE, data=case0201) ## ----------------------------------------------------------------------------- # Calculate Pooled SD n1 = fav["1976", "n"]; n1 n2 = fav["1978", "n"]; n2 s1 = fav["1976", "sd"]; s1 s2 = fav["1978", "sd"]; s2 Sp = sqrt(((n1-1)*(s1)^2+(n2-1)*(s2)^2)/(n1+n2-2)); Sp # Calculate standard error SE = Sp*sqrt(1/n1+1/n2); SE ## ----------------------------------------------------------------------------- Y1 = fav["1976", "mean"]; Y1 Y2 = fav["1978", "mean"]; Y2 Yd = Y2-Y1; Yd df = n1+n2-2; df qt = qt(0.975, df); qt hw = qt*SE; hw lower = Yd-hw; lower upper = Yd+hw; upper ## ----------------------------------------------------------------------------- tstats = (Yd-0)/SE; tstats # The hypothesis difference=0 onepval = 1-pt(tstats, df); onepval twopval = 2*onepval; twopval ## ----------------------------------------------------------------------------- t.test(Depth ~ Year, var.equal=TRUE, data=case0201) confint(lm(Depth ~ Year, data=case0201)) ## ----------------------------------------------------------------------------- summary(case0202) ## ----transform---------------------------------------------------------------- case0202 = transform(case0202, DIFF = Unaffected - Affected) favstats(~ DIFF, data=case0202) ## ----------------------------------------------------------------------------- densityplot(~ DIFF, data=case0202) ## ----------------------------------------------------------------------------- # Calculate t-statistics difmean = mean(~ DIFF, data=case0202); difmean difsd = sd(~ DIFF, data=case0202); difsd difn = nrow(case0202); difn difSE = difsd/sqrt(difn); difSE tscore = (difmean-0)/difSE; tscore # hypothesis difference=0 twopvalue = 2*(1-pt(tscore, difn-1)); twopvalue # Construct confidence interval tstar = qt(0.975, difn-1); tstar schizolower = difmean - tstar*difSE; schizolower schizoupper = difmean + tstar*difSE; schizoupper ## ----------------------------------------------------------------------------- with(case0202, t.test(Unaffected, Affected, paired=TRUE))