%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Chapter 07, Horton et al. using mosaic} %\VignettePackage{Sleuth2} \documentclass[11pt]{article} \usepackage[margin=1in,bottom=.5in,includehead,includefoot]{geometry} \usepackage{hyperref} \usepackage{language} \usepackage{alltt} \usepackage{mathtools} \usepackage{amsmath} \usepackage{fancyhdr} \pagestyle{fancy} \fancyhf{} %% Now begin customising things. See the fancyhdr docs for more info. \chead{} \lhead[\sf \thepage]{\sf \leftmark} \rhead[\sf \leftmark]{\sf \thepage} \lfoot{} \cfoot{Statistical Sleuth in R: Chapter 7} \rfoot{} \newcounter{myenumi} \newcommand{\saveenumi}{\setcounter{myenumi}{\value{enumi}}} \newcommand{\reuseenumi}{\setcounter{enumi}{\value{myenumi}}} \pagestyle{fancy} \def\R{{\sf R}} \def\Rstudio{{\sf RStudio}} \def\RStudio{{\sf RStudio}} \def\term#1{\textbf{#1}} \def\tab#1{{\sf #1}} \usepackage{relsize} \newlength{\tempfmlength} \newsavebox{\fmbox} \newenvironment{fmpage}[1] { \medskip \setlength{\tempfmlength}{#1} \begin{lrbox}{\fmbox} \begin{minipage}{#1} \vspace*{.02\tempfmlength} \hfill \begin{minipage}{.95 \tempfmlength}} {\end{minipage}\hfill \vspace*{.015\tempfmlength} \end{minipage}\end{lrbox}\fbox{\usebox{\fmbox}} \medskip } \newenvironment{boxedText}[1][.98\textwidth]% {% \begin{center} \begin{fmpage}{#1} }% {% \end{fmpage} \end{center} } \newenvironment{boxedTable}[2][tbp]% {% \begin{table}[#1] \refstepcounter{table} \begin{center} \begin{fmpage}{.98\textwidth} \begin{center} \sf \large Box~\expandafter\thetable. #2 \end{center} \medskip }% {% \end{fmpage} \end{center} \end{table} % need to do something about exercises that follow boxedTable } \newcommand{\cran}{\href{http://www.R-project.org/}{CRAN}} \title{The Statistical Sleuth in R: \\ Chapter 7} \author{ Ruobing Zhang \and Kate Aloisio \and Nicholas J. Horton\thanks{Department of Mathematics, Amherst College, nhorton@amherst.edu} } \date{\today} \begin{document} \maketitle \tableofcontents %\parindent=0pt <>= require(knitr) opts_chunk$set( dev="pdf", fig.path="figures/", fig.height=6, fig.width=8, out.width=".67\\textwidth", fig.keep="high", fig.show="hold", fig.align="center", prompt=TRUE, # show the prompts; but perhaps we should not do this comment=NA # turn off commenting of ouput (but perhaps we should not do this either ) @ <>= opts_chunk$set( dev="pdf", fig.path="figures/", fig.height=3, fig.width=4, out.width=".47\\textwidth", fig.keep="high", fig.show="hold", fig.align="center", prompt=TRUE, # show the prompts; but perhaps we should not do this comment=NA # turn off commenting of ouput (but perhaps we should not do this either ) require(Sleuth2) require(mosaic) trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice set.seed(123) # this allows for code formatting inline. Use \Sexpr{'function(x,y)'}, for exmaple. knit_hooks$set(inline = function(x) { if (is.numeric(x)) return(knitr:::format_sci(x, 'latex')) x = as.character(x) h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize')) h = gsub("([_#$%&])", "\\\\\\1", h) h = gsub('(["\'])', '\\1{}', h) gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h) }) showOriginal=FALSE showNew=TRUE @ <>= print.pval = function(pval) { threshold = 0.0001 return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""), ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""), paste("p=", round(pval, 3), sep="")))) } @ \section{Introduction} This document is intended to help describe how to undertake analyses introduced as examples in the Second Edition of the \emph{Statistical Sleuth} (2002) by Fred Ramsey and Dan Schafer. More information about the book can be found at \url{http://www.proaxis.com/~panorama/home.htm}. This file as well as the associated \pkg{knitr} reproducible analysis source file can be found at \url{http://www.amherst.edu/~nhorton/sleuth}. This work leverages initiatives undertaken by Project MOSAIC (\url{http://www.mosaic-web.org}), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the \pkg{mosaic} package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (\url{http://cran.r-project.org/web/packages/mosaic/vignettes/MinimalR.pdf}). To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command: <>= install.packages('mosaic') # note the quotation marks @ Once this is installed, it can be loaded by running the command: <>= require(mosaic) @ This needs to be done once per session. In addition the data files for the \emph{Sleuth} case studies can be accessed by installing the \pkg{Sleuth2} package. <>= install.packages('Sleuth2') # note the quotation marks @ <>= require(Sleuth2) @ We also set some options to improve legibility of graphs and output. <>= trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice options(digits=4) @ The specific goal of this document is to demonstrate how to calculate the quantities described in Chapter 7: Simple Linear Regression: A Model for the Mean using R. \section{The Big Bang} Is there relation between distance and radial velocity among extra-galactic nebulae? This is the question addressed in case study 7.1 in the \emph{Sleuth}. \subsection{Summary statistics and graphical display} We begin by reading the data and summarizing the variables. <<>>= summary(case0701) @ A total of \Sexpr{nrow(case0701)} nebulae are included in this data. <<>>= histogram(~ Velocity, type='density', density=TRUE, nint=10, data=case0701) histogram(~ Distance, type='density', density=TRUE, nint=10, data=case0701) @ The density plots show that the distributions for the two variables are fairly symmetric, but more uniform than normally distributed. <>= xyplot(Distance ~ Velocity, type=c("p", "r"), data=case0701) @ The scatterplot is displayed on page 175 of the \emph{Sleuth}. It indicates that there is a linear statistical relationship between distance and velocity. \subsection{The simple linear regression model} The following code presents the results interpreted on page 184 of the \emph{Sleuth}. <<>>= lm1 = lm(Distance ~ Velocity, data=case0701) summary(lm1) @ The estimated parameter for the intercept is \Sexpr{round(coef(lm1)["(Intercept)"], 4)} megaparsecs and the estimated parameter for velocity is \Sexpr{round(coef(lm1)["Velocity"], 4)} megaparsecs/(km/sec). The estimated mean function is $\hat{\mu}\left(\mathrm{distance}|\mathrm{velocity}\right)$ = \Sexpr{round(coef(lm1)["(Intercept)"], 4)} + \Sexpr{round(coef(lm1)["Velocity"], 4)} * velocity. The estimate of residual standard error is \Sexpr{summary(lm1)$sigma} megaparsecs with 22 degrees of freedom. These results are also presented by Display 7.9 (page 185). <<>>= fitted(lm1) resid(lm1)^2 sum(resid(lm1)^2) sum(resid(lm1)^2)/sum((fitted(lm1)-mean(~Distance, data=case0701))^2) @ Display 7.8 (page 184) shows the list of fitted values and residuals for this model. The sum of all the squared residuals is \Sexpr{round(sum((resid(lm1)^2)), 3)} and R-squared is \Sexpr{sum(resid(lm1)^2)/sum((fitted(lm1)-mean(~Distance, data=case0701))^2)}. We can also display 95\% confidence bands for the model line and the predicted values, the following graph is akin to Display 7.11 (page 189). <>= xyplot(Distance ~ Velocity, panel=panel.lmbands, data=case0701) @ \subsection{Inferential Tools} First, we test $\beta_{0}$ (the intercept). From the previous summary, we know that the two-sided $p$-value for the intercept is \Sexpr{summary(lm1)$coefficients["(Intercept)", "Pr(>|t|)"]}. This $p$-value is small enough for us to reject the null hypothesis that the estimated parameter for the intercept equals 0 (page 186). Next we want to examine $\beta_{1}$. The current $\beta_{1}$ for $\hat{\mu}\left(\mathrm{Y}|\mathrm{X}\right)$ = $\beta_{0}$ + $\beta_{1}$ * X is \Sexpr{round(coef(lm1)["Velocity"], 4)}, and we want to get the $\beta_{1}$ for $\hat{\mu}\left(\mathrm{Y}|\mathrm{X}\right)$ = $\beta_{1}$ * X, a model with no intercept (page 186). <<>>= # linear regression with no intercept lm2 = lm(Distance ~ Velocity-1, data=case0701) summary(lm2) confint(lm2) @ Without the intercept, the new estimate for $\beta_{1}$ is \Sexpr{round(coefficients(lm2)["Velocity"], 4)} megaparsec-second/km. The standard error is $\Sexpr{round(summary(lm2)$coefficients["Velocity","Std. Error"], 6)}$ megaparsecs with 23 degrees of freedom. The 95\% confidence interval is (\Sexpr{confint(lm2)[1]}, \Sexpr{confint(lm2)[2]}). Because 1 megaparsec-second/km = 979.8 billion years, the confidence interval could be written as \Sexpr{round(confint(lm2)[1]*979.8, 2)} to \Sexpr{round(confint(lm2)[2]*979.8, 2)} billion years, and the best estimate is \Sexpr{round(coef(lm2)["Velocity"]*979.8, 2)} billion years (page 186). \section{Meat Processing and pH} Is there a relationship between postmortem muscle pH and time after slaughter? This is the question addressed in case study 7.2 in the \emph{Sleuth}. \subsection{Summary statistics and graphical display} We begin by reading the data and summarizing the variables. <<>>= summary(case0702) @ A total of \Sexpr{nrow(case0702)} steer carcasses are included in this data as shown in Display 7.3, page 177. <<>>= logtime = log(case0702$Time) xyplot(pH ~ logtime, data=case0702) @ The above scatterplot indicates a negative linear relationship between pH and log(Time). \subsection{The simple linear regression model} We fit a simple linear regression model of pH on log(time) after slaughter. The estimated mean function will be $\hat{\mu}\left(\mathrm{pH}|\mathrm{logtime}\right)$ = $\beta_{0}$ + $\beta_{1}$ * log(Time). <<>>= lm3 = lm(pH ~ logtime, data=case0702) summary(lm3) beta0 = coef(lm3)["(Intercept)"]; beta0 beta1 = coef(lm3)["logtime"]; beta1 sigma = summary(lm3)$sigma; sigma @ The $\hat{\beta_{0}}$ is \Sexpr{beta0} and the $\hat{\beta_{1}}$ is \Sexpr{beta1}. The $\hat{\sigma}$ is \Sexpr{sigma} (page 187). \subsection{Inferential Tools} With the previous information, we can calculate the 95\% confidence interval for the estimated mean pH of steers 4 hours after slaughter (Display 7.10, page 187): <<>>= muhat = beta0+beta1*log(4); muhat n = nrow(case0702) mean = mean(~logtime, data=case0702) sd = sd(~logtime, data=case0702) se = sigma*sqrt(1/n+(log(4)-mean)^2/((n-1)*sd)); se upper = muhat + qt(0.975, df=8)*se; upper lower = muhat - qt(0.975, df=8)*se; lower @ Or we can use the following code to get the same result: <<>>= predict(lm3, interval="confidence")[5,] @ So the 95\% confidence interval for estimated mean is (\Sexpr{round(lower, 2)}, \Sexpr{round(upper, 2)}). Next, we can calculate the 95\% prediction interval for a steer carcass 4 hours after slaughter (Display 7.12, page 191): <<>>= pred = beta0+beta1*log(4); pred predse = sigma*sqrt(1+1/n+(log(4)-mean)^2/((n-1)*sd)); predse predupper = pred+qt(0.975, df=8)*predse; predupper predlower = pred-qt(0.975, df=8)*predse; predlower @ Or we can use the following code to get the 95\% prediction interval for a steer carcass 4 hours after slaughter: <>= predict(lm3, interval="prediction")[5,] @ So the 95\% prediction interval is (\Sexpr{round(predlower, 2)}, \Sexpr{round(predupper, 2)}). <>= xyplot(pH ~ logtime, abline=(h=6), data=case0702, panel=panel.lmbands) @ The 95\% prediction band is presented as Display 7.4 (page 178). \end{document}