## ----setup, include=FALSE, cache=FALSE---------------------------------------- require(knitr) opts_chunk$set( dev="pdf", fig.path="figures/", fig.height=3, fig.width=4, out.width=".47\\textwidth", fig.keep="high", fig.show="hold", fig.align="center", prompt=TRUE, # show the prompts; but perhaps we should not do this comment=NA # turn off commenting of ouput (but perhaps we should not do this either ) ## ----pvalues, echo=FALSE, message=FALSE--------------------------------------- print.pval = function(pval) { threshold = 0.0001 return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""), ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""), paste("p=", round(pval, 3), sep="")))) } ## ----setup2,echo=FALSE,message=FALSE------------------------------------------ require(mosaic) require(Sleuth2) trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice set.seed(123) # this allows for code formatting inline. Use \Sexpr{'function(x,y)'}, for exmaple. knit_hooks$set(inline = function(x) { if (is.numeric(x)) return(knitr:::format_sci(x, 'latex')) x = as.character(x) h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize')) h = gsub("([_#$%&])", "\\\\\\1", h) h = gsub('(["\'])', '\\1{}', h) gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h) }) showOriginal=FALSE showNew=TRUE ## ----install_mosaic,eval=FALSE------------------------------------------------ # install.packages('mosaic') # note the quotation marks ## ----load_mosaic,eval=FALSE--------------------------------------------------- # require(mosaic) ## ----install_Sleuth2,eval=FALSE----------------------------------------------- # install.packages('Sleuth2') # note the quotation marks ## ----load_Sleuth2,eval=FALSE-------------------------------------------------- # require(Sleuth2) ## ----eval=TRUE---------------------------------------------------------------- trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice options(digits=3) ## ----------------------------------------------------------------------------- summary(case0101) ## ----eval=TRUE---------------------------------------------------------------- favstats(Score ~ Treatment, data=case0101) histogram(~ Score | Treatment, data=case0101) ## ----------------------------------------------------------------------------- with(subset(case0101, Treatment=="Extrinsic"), stem(Score, scale=5)) with(subset(case0101, Treatment=="Intrinsic"), stem(Score, scale=5)) ## ----eval=FALSE--------------------------------------------------------------- # maggregate(Score ~ Treatment, FUN=stem, data=case0101) ## ----eval=TRUE---------------------------------------------------------------- t.test(Score ~ Treatment, alternative="two.sided", data=case0101) ## ----eval=TRUE---------------------------------------------------------------- summary(lm(Score ~ Treatment, data=case0101)) ## ----eval=TRUE---------------------------------------------------------------- diffmeans = diff(mean(Score ~ Treatment, data=case0101)) diffmeans # observed difference numsim = 1000 # set to a sufficient number nulldist = do(numsim)*diff(mean(Score~shuffle(Treatment), data=case0101)) confint(nulldist) # Display 1.8 Sleuth histogram(~ Intrinsic, nint=50, data=nulldist, v=c(-4.14,4.14)) ## ----eval=TRUE---------------------------------------------------------------- summary(case0102) # Display 1.3 Sleuth p4 ## ----eval=TRUE---------------------------------------------------------------- favstats(Salary ~ Sex, data=case0102) bwplot(Salary ~ Sex, data=case0102) densityplot(~ Salary, groups=Sex, auto.key=TRUE, data=case0102) ## ----------------------------------------------------------------------------- x = rnorm(1000) histogram(~ x) # Normal x = rexp(1000) histogram(~ x) # Long-tailed x = runif(1000) histogram(~ x) # Short-tailed x = rchisq(1000, df=15) histogram(~ x) # Skewed ## ----eval=TRUE---------------------------------------------------------------- t.test(Salary ~ Sex, var.equal=TRUE, data=case0102) ## ----permutetest,eval=TRUE---------------------------------------------------- obsdiff = diff(mean(Salary ~ Sex, data=case0102)); obsdiff numsim = 1000 res = do(numsim) * diff(mean(Salary~shuffle(Sex), data=case0102)) densityplot(~ Male, data=res) confint(res) favstats(~ Male, data=res) p = sum(abs(res$Male) >= abs(obsdiff))/numsim; p ## ----------------------------------------------------------------------------- t.test(Salary ~ Sex, alternative="less", data=case0102)