Package ‘SeBR’

July 3, 2023
Type Package
Title Semiparametric Bayesian Regression Analysis
Version 1.0.0

Description Monte Carlo and MCMC sampling algorithms for semiparametric
Bayesian regression analysis. These models feature a nonparametric
(unknown) transformation of the data paired with widely-used
regression models including linear regression, spline regression,
quantile regression, and Gaussian processes. The transformation
enables broader applicability of these key models, including for
real-valued, positive, and compactly-supported data with challenging
distributional features. The samplers prioritize computational
scalability and, for most cases, Monte Carlo (not MCMC) sampling for
greater efficiency. Details of the methods and algorithms are provided
in Kowal and Wu (2023) <arXiv:2306.05498>.

License MIT + file LICENSE
URL https://github.com/drkowal/SeBR, https://drkowal.github.io/SeBR/

BugReports https://github.com/drkowal/SeBR/issues
Imports fields, GpGp, MASS, quantreg, spikeSlabGAM, statmod
Suggests knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Dan Kowal [aut, cre, cph] (<https://orcid.org/0000-0003-0917-3007>)
Maintainer Dan Kowal <daniel.r.kowal@gmail.com>
Repository CRAN

Date/Publication 2023-07-03 16:30:10 UTC

https://arxiv.org/abs/2306.05498
https://github.com/drkowal/SeBR
https://drkowal.github.io/SeBR/
https://github.com/drkowal/SeBR/issues
https://orcid.org/0000-0003-0917-3007

2 bgp_bc
R topics documented:
bgp_bc. . . . 2
blm_bc . . . s 4
bar . . 6
bsm_bc . . . 8
computeTimeRemaining 10
contract_grid 10
Fz_fun 11
g bC L 11
g fun ..o e 12
CUANV_APPIOX « . v v v v e e e e e e e e e e e e 13
g NV _bC. . e 13
Plot_pptest. e e 14
TANK_APPrOX . . . o v v e e e e e e e e e e e 14
SDED . 15
sblm e 17
ShOr . . 19
SOSM . . . L 21
simulate tlm e 23
sir_adjust 24
uni.slice L 26
Index 28
bgp_bc Bayesian Gaussian processes with a Box-Cox transformation
Description

MCMC sampling for Bayesian Gaussian process regression with a (known or unknown) Box-Cox
transformation.

Usage

bgp_

Y

bc(

locs,

X

= NULL,

covfun_name = "matern_isotropic”,
locs_test = locs,

X_
nn

test = NULL,
= 30,

emp_bayes = TRUE,
lambda = NULL,
sample_lambda = TRUE,
nsave = 1000,

nburn = 1000,

bgp_bc

nskip = 0
)

Arguments

Yy
locs

X
covfun_name
locs_test
X_test

nn

emp_bayes

lambda

sample_lambda

nsave
nburn

nskip

Details

n x 1 response vector

n x d matrix of locations

n x p design matrix; if unspecified, use intercept only

string name of a covariance function; see ?GpGp

n_test x d matrix of locations at which predictions are needed; default is locs
n_test x p design matrix for test data; default is X

number of nearest neighbors to use; default is 30 (larger values improve the
approximation but increase computing cost)

logical; if TRUE, use a (faster!) empirical Bayes approach for estimating the
mean function

Box-Cox transformation; if NULL, estimate this parameter

logical; if TRUE, sample lambda, otherwise use the fixed value of lambda above
or the MLE (if lambda unspecified)

number of MCMC iterations to save
number of MCMC iterations to discard

number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

This function provides Bayesian inference for transformed Gaussian processes. The transformation
is parametric from the Box-Cox family, which has one parameter lambda. That parameter may
be fixed in advanced or learned from the data. For computational efficiency, the Gaussian pro-
cess parameters are fixed at point estimates, and the latent Gaussian process is only sampled when
emp_bayes = FALSE.

Value

a list with the following elements:

» coefficients the posterior mean of the regression coefficients

e fitted.values the posterior predictive mean at the test points locs_test

» fit_gp the fitted GpGp_fit object, which includes covariance parameter estimates and other
model information

* post_ypred: nsave x n_test samples from the posterior predictive distribution at locs_test

* post_g: nsave posterior samples of the transformation evaluated at the unique y values

* post_lambda nsave posterior samples of lambda
¢ model: the model fit (here, bgp_bc)

as well as the arguments passed in.

4 blm_bc

Note

Box-Cox transformations may be useful in some cases, but in general we recommend the nonpara-
metric transformation (with Monte Carlo, not MCMC sampling) in sbgp.

Examples

H

Simulate some data:
= 200 # sample size
= seq(@, 1, length = n) # observation points

X >

H+

Transform a noisy, periodic function:
= g_inv_bc(
sin(2xpi*x) + sin(4*pi*x) + rnorm(n, sd = .5),
lambda = .5) # Signed square-root transformation

<

Fit a Bayesian Gaussian process with Box-Cox transformation:

fit = bgp_bc(y =y, locs = x)

names(fit) # what is returned

coef(fit) # estimated regression coefficients (here, just an intercept)
class(fit$fit_gp) # the GpGp object is also returned
round(quantile(fit$post_lambda), 3) # summary of unknown Box-Cox parameter

Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(@.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),
xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2]1, rev(pi_y[,11)),col="gray', border=NA)
lines(x, y, type='p")
lines(x, fitted(fit), 1lwd = 3)

blm_bc Bayesian linear model with a Box-Cox transformation

Description

MCMC sampling for Bayesian linear regression with a (known or unknown) Box-Cox transforma-
tion. A g-prior is assumed for the regression coefficients.

Usage

blm_bc(
Y,
X,
X_test = X,
psi = length(y),
lambda = NULL,

blm_bc

sample_lambda
nsave = 1000,
nburn = 1000,
nskip = 0,

= TRUE,

verbose = TRUE

Arguments

y
X

X_test

psi
lambda

sample_lambda

nsave
nburn

nskip

verbose

Details

n x 1 vector of observed counts
n x p matrix of predictors

n_test x p matrix of predictors for test data; default is the observed covariates
X

prior variance (g-prior)
Box-Cox transformation; if NULL, estimate this parameter

logical; if TRUE, sample lambda, otherwise use the fixed value of lambda above
or the MLE (if lambda unspecified)

number of MCMC iterations to save
number of MCMC iterations to discard

number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

logical; if TRUE, print time remaining

This function provides fully Bayesian inference for a transformed linear model via MCMC sam-
pling. The transformation is parametric from the Box-Cox family, which has one parameter 1ambda.
That parameter may be fixed in advanced or learned from the data.

Value

a list with the following elements:

* coefficients the posterior mean of the regression coefficients

» fitted.values the posterior predictive mean at the test points X_test

e post_theta:

e post_ypred:
X_test

nsave x p samples from the posterior distribution of the regression coefficients

nsave x n_test samples from the posterior predictive distribution at test points

* post_g: nsave posterior samples of the transformation evaluated at the unique y values

* post_lambda nsave posterior samples of lambda

* post_sigma nsave posterior samples of sigma
* model: the model fit (here, b1lm_bc)

as well as the arguments passed in.

Note

Box-Cox transformations may be useful in some cases, but in general we recommend the nonpara-
metric transformation (with Monte Carlo, not MCMC sampling) in sb1m.

Examples

Simulate some data:

dat = simulate_tlm(n = 100, p = 5, g_type = 'step')

y = dat$y; X = dat$X # training data

y_test = dat$y_test; X_test = dat$X_test # testing data

hist(y, breaks = 25) # marginal distribution

Fit the Bayesian linear model with a Box-Cox transformation:

fit = blm_bc(y =y, X = X, X_test = X_test)

names(fit) # what is returned

round(quantile(fit$post_lambda), 3) # summary of unknown Box-Cox parameter

bar Bayesian quantile regression

Description

MCMC sampling for Bayesian quantile regression. An asymmetric Laplace distribution is assumed
for the errors, so the regression models targets the specified quantile. A g-prior is assumed for the
regression coefficients.

Usage
bar(
y,
X,
tau = 0.5,
X_test = X,
psi = length(y),
nsave = 1000,
nburn = 1000,
nskip = 0,
verbose = TRUE
)
Arguments
y n x 1 vector of observed counts
X n x p matrix of predictors

tau the target quantile (between zero and one)

bgr 7

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

psi prior variance (g-prior)

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

verbose logical; if TRUE, print time remaining

Value

a list with the following elements:

» coefficients the posterior mean of the regression coefficients
e fitted.values the estimated tauth quantile at test points X_test
* post_theta: nsave x p samples from the posterior distribution of the regression coefficients

* post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

¢ model: the model fit (here, bgr)

as well as the arguments passed

Note

The asymmetric Laplace distribution is advantageous because it links the regression model (X%*%theta)
to a pre-specified quantile (tau). However, it is often a poor model for observed data, and the semi-
parametric version sbqr is recommended in general.

Examples

Simulate some heteroskedastic data (no transformation):

dat = simulate_tlm(n = 100, p = 5, g_type = 'box-cox', heterosked = TRUE, lambda = 1)
y = dat$y; X = dat$X # training data

y_test = dat$y_test; X_test = dat$X_test # testing data

Target this quantile:
tau = 0.05

Fit the Bayesian quantile regression model:
fit = bgr(y =y, X = X, tau = tau, X_test = X_test)
names(fit) # what is returned

Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(yo, yo, type='n', ylim = c(0,1),
xlab='y"', ylab="F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)
lines(y0@, ecdf(fit$post_ypred[s,])(y0@), # ECDF of posterior predictive draws
col="gray', type ='s"))

bsm_bc

lines(y0@, ecdf(y_test)(y@), # ECDF of testing data

col="black', type = 's', lwd = 3)

The posterior predictive checks usually do not pass!
try ?sbgr instead...

bsm_bc

Bayesian spline model with a Box-Cox transformation

Description

MCMC sampling for Bayesian spline regression with a (known or unknown) Box-Cox transforma-

tion.
Usage
bsm_bc(
Y,
x = NULL,

x_test = NULL,

psi = NULL,

lambda = NULL,

sample_lambda
nsave = 1000,

= TRUE,

nburn = 1000,
nskip = 0,
verbose = TRUE
)
Arguments
\ n x 1 vector of observed counts
X n x 1 vector of observation points; if NULL, assume equally-spaced on [0,1]
x_test n_test x 1 vector of testing points; if NULL, assume equal to x
psi prior variance (inverse smoothing parameter); if NULL, sample this parameter
lambda Box-Cox transformation; if NULL, estimate this parameter

sample_lambda

logical; if TRUE, sample lambda, otherwise use the fixed value of lambda above
or the MLE (if lambda unspecified)

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

verbose logical; if TRUE, print time remaining

bsm_bc 9

Details

This function provides fully Bayesian inference for a transformed spline model via MCMC sam-
pling. The transformation is parametric from the Box-Cox family, which has one parameter lambda.
That parameter may be fixed in advanced or learned from the data.

Value

a list with the following elements:

* coefficients the posterior mean of the regression coefficients

» fitted.values the posterior predictive mean at the test points x_test

* post_theta: nsave x p samples from the posterior distribution of the regression coefficients
* post_ypred: nsave x n_test samples from the posterior predictive distribution at x_test

* post_g: nsave posterior samples of the transformation evaluated at the unique y values

* post_lambda nsave posterior samples of lambda

¢ model: the model fit (here, sbsm_bc)

as well as the arguments passed in.

Note

Box-Cox transformations may be useful in some cases, but in general we recommend the nonpara-
metric transformation (with Monte Carlo, not MCMC sampling) in sbsm.

Examples

Simulate some data:
n = 100 # sample size
x = sort(runif(n)) # observation points

Transform a noisy, periodic function:
y = g_inv_bc(
sin(2xpi*x) + sin(4*pi*x) + rnorm(n, sd = .5),
lambda = .5) # Signed square-root transformation

Fit the Bayesian spline model with a Box-Cox transformation:

fit = bsm_bc(y =y, x = x)

names(fit) # what is returned

round(quantile(fit$post_lambda), 3) # summary of unknown Box-Cox parameter

Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(@.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),

xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2]1, rev(pi_y[,11)),col="gray', border=NA)
lines(x, y, type='p")
lines(x, fitted(fit), lwd = 3)

10 contract_grid

computeTimeRemaining Estimate the remaining time in the MCMC based on previous samples

Description

Estimate the remaining time in the MCMC based on previous samples

Usage

computeTimeRemaining(nsi, timer®, nsims, nrep = 1000)

Arguments
nsi Current iteration
timero Initial timer value, returned from proc.time()[3]
nsims Total number of simulations
nrep Print the estimated time remaining every nrep iterations
Value

Table of summary statistics using the function summary

contract_grid Grid contraction

Description
Contract the grid if the evaluation points exceed some threshold. This removes the corresponding z
values. We can add points back to achieve the same (approximate) length.

Usage

contract_grid(z, Fz, lower, upper, add_back = TRUE, monotone = TRUE)

Arguments

z grid points (ordered)

Fz function evaluated at those grid points

lower lower threshold at which to check Fz

upper upper threshold at which to check Fz

add_back logical; if true, expand the grid to (about) the original size

monotone logical; if true, enforce monotonicity on the expanded grid
Value

a list containing the grid points z and the (interpolated) function Fz at those points

Fz fun 11

Fz_fun Compute the latent data CDF

Description

Assuming a Gaussian latent data distribution (given x), compute the CDF on a grid of points

Usage

Fz_fun(z, weights = NULL, mean_vec = NULL, sd_vec)

Arguments
z vector of points at which the CDF of z is evaluated
weights n-dimensional vector of weights; if NULL, assume 1/n
mean_vec n-dimensional vector of means; if NULL, assume mean zero
sd_vec n-dimensional vector of standard deviations

Value

CDF of z evaluated at z

g_bc Box-Cox transformation

Description
Evaluate the Box-Cox transformation, which is a scaled power transformation to preserve continuity
in the index lambda at zero. Negative values are permitted.

Usage
g_bc(t, lambda)

Arguments
t argument(s) at which to evaluate the function
lambda Box-Cox parameter

Value

The evaluation(s) of the Box-Cox function at the given input(s) t.

12 g fun

Note

Special cases include the identity transformation (1ambda = 1), the square-root transformation (Lambda
=1/2), and the log transformation (1ambda =).

Examples

Log-transformation:
g_bc(1:5, lambda = @); log(1:5)

Square-root transformation: note the shift and scaling
g_bc(1:5, lambda = 1/2); sqrt(1:5)

g_fun Compute the transformation

Description

Given the CDFs of z and y, compute a smoothed function to evaluate the transformation

Usage

g_fun(y, Fy_eval, z, Fz_eval)

Arguments
y vector of points at which the CDF of y is evaluated
Fy_eval CDF of y evaluated at y
z vector of points at which the CDF of z is evaluated
Fz_eval CDF of z evaluated at z

Value

A smooth monotone function which can be used for evaluations of the transformation.

g _inv_approx 13

g_inv_approx Approximate inverse transformation

Description

Compute the inverse function of a transformation g based on a grid search.

Usage

g_inv_approx(g, t_grid)

Arguments

g the transformation function

t_grid grid of arguments at which to evaluate the transformation function
Value

A function which can be used for evaluations of the (approximate) inverse transformation function.

g_inv_bc Inverse Box-Cox transformation

Description

Evaluate the inverse Box-Cox transformation. Negative values are permitted.

Usage
g_inv_bc(s, lambda)

Arguments
s argument(s) at which to evaluate the function
lambda Box-Cox parameter

Value

The evaluation(s) of the inverse Box-Cox function at the given input(s) s.

Note
Special cases include the identity transformation (1ambda = 1), the square-root transformation (Lambda
=1/2), and the log transformation (1ambda =).
@examples # (Inverse) log-transformation: g_inv_bc(1:5, lambda = 0); exp(1:5)

(Inverse) square-root transformation: note the shift and scaling g_inv_bc(1:5, lambda = 1/2);
(1:5)"2

14 rank_approx

plot_pptest Plot point and interval predictions on testing data

Description
Given posterior predictive samples at X_test, plot the point and interval estimates and compare to
the actual testing data y_test.

Usage

plot_pptest(post_ypred, y_test, alpha_level = 0.1)

Arguments
post_ypred nsave x n_test samples from the posterior predictive distribution at test points
X_test
y_test n_test testing points
alpha_level alpha-level for prediction intervals
Value

plot of the testing data, point and interval predictions, and a summary of the empirical coverage

Examples

Simulate some data:
dat = simulate_tlm(n = 100, p = 5, g_type = 'step')

Fit a semiparametric Bayesian linear model:
fit = sblm(y = dat$y, X = dat$X, X_test = dat$X_test)

Evaluate posterior predictive means and intervals on the testing data:
plot_pptest(fit$post_ypred, dat$y_test,
alpha_level = 0.10) # coverage should be about 90%

rank_approx Rank-based estimation of the linear regression coefficients

Description

For a transformed Gaussian linear model, compute point estimates of the regression coefficients.
This approach uses the ranks of the data and does not require the transformation, but must expand
the sample size to n*2 and thus can be slow.

sbgp 15

Usage

rank_approx(y, X)

Arguments
n x 1 response vector
X n x p matrix of predictors (should not include an intercept!)
Value

the estimated linear coefficients

Examples

Simulate some data:
dat = simulate_tlm(n = 200, p = 10, g_type = 'step')

Point estimates for the linear coefficients:
theta_hat = suppressWarnings(
rank_approx(y = dat$y,
X = dat$X[,-1]1) # remove intercept
) # warnings occur from glm.fit (fitted probabilities @ or 1)

Check: correlation with true coefficients
cor(dat$beta_true[-1], # excluding the intercept
theta_hat)

sbgp Semiparametric Bayesian Gaussian processes

Description

Monte Carlo sampling for Bayesian Gaussian process regression with an unknown (nonparametric)
transformation.

Usage

sbgp(
Y,
locs,
X = NULL,
covfun_name = "matern_isotropic”,
locs_test = locs,
X_test = NULL,
nn = 30,
emp_bayes = TRUE,
approx_g = FALSE,

16 sbgp

nsave = 1000,
ngrid = 100
)
Arguments
y n x 1 response vector
locs n x d matrix of locations
X n x p design matrix; if unspecified, use intercept only
covfun_name string name of a covariance function; see ?GpGp
locs_test n_test x d matrix of locations at which predictions are needed; default is locs
X_test n_test x p design matrix for test data; default is X
nn number of nearest neighbors to use; default is 30 (larger values improve the
approximation but increase computing cost)
emp_bayes logical; if TRUE, use a (faster!) empirical Bayes approach for estimating the
mean function
approx_g logical; if TRUE, apply large-sample approximation for the transformation
nsave number of Monte Carlo simulations
ngrid number of grid points for inverse approximations
Details

This function provides Bayesian inference for a transformed Gaussian process model using Monte
Carlo (not MCMC) sampling. The transformation is modeled as unknown and learned jointly with
the regression function (unless approx_g = TRUE, which then uses a point approximation). This
model applies for real-valued data, positive data, and compactly-supported data (the support is
automatically deduced from the observed y values). The results are typically unchanged whether
laplace_approx is TRUE/FALSE,; setting it to TRUE may reduce sensitivity to the prior, while set-
ting it to FALSE may speed up computations for very large datasets. For computational efficiency,
the Gaussian process parameters are fixed at point estimates, and the latent Gaussian process is
only sampled when emp_bayes = FALSE. However, the uncertainty from this term is often neg-
ligible compared to the observation errors, and the transformation serves as an additional layer of
robustness.

Value
a list with the following elements:

» coefficients the estimated regression coefficients
» fitted.values the posterior predictive mean at the test points locs_test

» fit_gp the fitted GpGp_fit object, which includes covariance parameter estimates and other
model information

* post_ypred: nsave x ntest samples from the posterior predictive distribution at locs_test
* post_g: nsave posterior samples of the transformation evaluated at the unique y values
¢ model: the model fit (here, sbgp)

as well as the arguments passed in.

sblm 17

Examples

H

Simulate some data:
= 200 # sample size
= seq(@, 1, length = n) # observation points

X >

ETS

Transform a noisy, periodic function:
= g_inv_bc(
sin(2xpi*x) + sin(4*pi*x) + rnorm(n, sd = .5),
lambda = .5) # Signed square-root transformation

<

Fit the semiparametric Bayesian Gaussian process:

fit = sbgp(y =y, locs = x)

names(fit) # what is returned

coef(fit) # estimated regression coefficients (here, just an intercept)
class(fit$fit_gp) # the GpGp object is also returned

Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(@.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),
xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2], rev(pi_y[,1])),col="gray', border=NA)
lines(x, y, type='p')
lines(x, fitted(fit), lwd = 3)

sblm Semiparametric Bayesian linear model

Description

Monte Carlo sampling for Bayesian linear regression with an unknown (nonparametric) transfor-
mation. A g-prior is assumed for the regression coefficients.

Usage

sblm(
Y,
X,
X_test = X,
psi = length(y),
laplace_approx = TRUE,
approx_g = FALSE,
nsave = 1000,
ngrid = 100,
verbose = TRUE

18

Arguments

y
X

X_test

psi

laplace_approx

approx_g
nsave
ngrid

verbose

Details

sbim

n x 1 response vector
n x p matrix of predictors

n_test x p matrix of predictors for test data; default is the observed covariates
X

prior variance (g-prior)

logical; if TRUE, use a normal approximation to the posterior in the definition
of the transformation; otherwise the prior is used

logical; if TRUE, apply large-sample approximation for the transformation
number of Monte Carlo simulations
number of grid points for inverse approximations

logical; if TRUE, print time remaining

This function provides fully Bayesian inference for a transformed linear model using Monte Carlo
(not MCMC) sampling. The transformation is modeled as unknown and learned jointly with the
regression coefficients (unless approx_g = TRUE, which then uses a point approximation). This
model applies for real-valued data, positive data, and compactly-supported data (the support is
automatically deduced from the observed y values). The results are typically unchanged whether
laplace_approx is TRUE/FALSE; setting it to TRUE may reduce sensitivity to the prior, while
setting it to FALSE may speed up computations for very large datasets.

Value

a list with the following elements:

» coefficients the posterior mean of the regression coefficients

* fitted.values the posterior predictive mean at the test points X_test

e post_theta:
* post_ypred:

X_test

nsave x p samples from the posterior distribution of the regression coefficients

nsave x n_test samples from the posterior predictive distribution at test points

* post_g: nsave posterior samples of the transformation evaluated at the unique y values
* model: the model fit (here, sb1m)

as well as the arguments passed in.

Examples

Simulate some data:

dat = simulate_tlm(n = 100, p = 5, g_type = 'step')

y = dat$y; X = dat$X # training data

y_test = dat$y_test; X_test = dat$X_test # testing data

hist(y, breaks =

25) # marginal distribution

sbgr 19

Fit the semiparametric Bayesian linear model:
fit = sblm(y =y, X = X, X_test = X_test)
names(fit) # what is returned

Note: this is Monte Carlo sampling, so no need for MCMC diagnostics!

Evaluate posterior predictive means and intervals on the testing data:
plot_pptest(fit$post_ypred, y_test,
alpha_level = 0.10) # coverage should be about 90%

Check: correlation with true coefficients
cor(datsbeta_truel-1],
coef(fit)[-11) # excluding the intercept

Summarize the transformation:
y0 = sort(unique(y)) # posterior draws of g are evaluated at the unique y observations
plot(yo, fit$post_gl[1,], type='n', ylim = range(fit$post_g),
xlab = 'y', ylab = 'g(y)', main = "Posterior draws of the transformation”)
temp = sapply(1:nrow(fit$post_g), function(s)
lines(y@, fit$post_gls,], col='gray')) # posterior draws
lines(y@, colMeans(fit$post_g), lwd = 3) # posterior mean

Add the true transformation, rescaled for easier comparisons:
lines(y,

scale(dat$g_true)*sd(colMeans(fit$post_g)) + mean(colMeans(fit$post_g)), type='p', pch=2)
legend('bottomright', c('Truth'), pch = 2) # annotate the true transformation

Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(yo, yo, type='n', ylim = c(0,1),
xlab='y', ylab='F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)
lines(y@, ecdf(fit$post_ypred[s,])(y@), # ECDF of posterior predictive draws
col='gray', type ='s"))
lines(y0, ecdf(y_test)(y@), # ECDF of testing data
col="black', type = 's', lwd = 3)

sbqr Semiparametric Bayesian quantile regression

Description

MCMC sampling for Bayesian quantile regression with an unknown (nonparametric) transforma-
tion. Like in traditional Bayesian quantile regression, an asymmetric Laplace distribution is as-
sumed for the errors, so the regression models targets the specified quantile. However, these models
are often woefully inadequate for describing observed data. We introduce a nonparametric trans-
formation to improve model adequacy while still providing inference for the regression coefficients
and the specified quantile. A g-prior is assumed for the regression coefficients.

20

Usage

sbgr(
Y,
X,
tau = 0.5,
X_test = X,

sbqr

psi = length(y),
laplace_approx = TRUE,
approx_g = FALSE,

nsave = 1000,
nburn = 100,
ngrid = 100,

verbose = TRUE

Arguments

y
X

tau
X_test

psi

laplace_approx

approx_g
nsave
nburn
ngrid

verbose

Details

n x 1 response vector
n x p matrix of predictors
the target quantile (between zero and one)

n_test x p matrix of predictors for test data; default is the observed covariates
X

prior variance (g-prior)

logical; if TRUE, use a normal approximation to the posterior in the definition
of the transformation; otherwise the prior is used

logical; if TRUE, apply large-sample approximation for the transformation
number of MCMC iterations to save

number of MCMC iterations to discard

number of grid points for inverse approximations

logical; if TRUE, print time remaining

This function provides fully Bayesian inference for a transformed quantile linear model. The
transformation is modeled as unknown and learned jointly with the regression coefficients (un-
less approx_g = TRUE, which then uses a point approximation). This model applies for real-valued
data, positive data, and compactly-supported data (the support is automatically deduced from the ob-
served y values). The results are typically unchanged whether laplace_approx is TRUE/FALSE;
setting it to TRUE may reduce sensitivity to the prior, while setting it to FALSE may speed up
computations for very large datasets.

Value

a list with the following elements:

» coefficients the posterior mean of the regression coefficients

sbsm 21

* fitted.values the estimated tauth quantile at test points X_test
* post_theta: nsave x p samples from the posterior distribution of the regression coefficients

* post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

* post_gtau: nsave x n_test samples of the tauth conditional quantile at test points X_test
* post_g: nsave posterior samples of the transformation evaluated at the unique y values

¢ model: the model fit (here, sbqr)

as well as the arguments passed in.

Examples

Simulate some heteroskedastic data (no transformation):

dat = simulate_tlm(n = 200, p = 10, g_type = 'box-cox', heterosked = TRUE, lambda = 1)
y = dat$y; X = dat$X # training data

y_test = dat$y_test; X_test = dat$X_test # testing data

Target this quantile:
tau = 0.05

Fit the semiparametric Bayesian quantile regression model:
fit = sbgr(y =y, X = X, tau = tau, X_test = X_test)
names(fit) # what is returned

Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(yo, yo, type='n', ylim = c(0,1),
xlab='y"', ylab="F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)
lines(y@, ecdf(fit$post_ypred[s,])(y@), # ECDF of posterior predictive draws
col='gray', type ='s"))
lines(y0@, ecdf(y_test)(y@), # ECDF of testing data
col="black', type = 's', lwd = 3)

sbsm Semiparametric Bayesian spline model

Description

Monte Carlo sampling for Bayesian spline regression with an unknown (nonparametric) transfor-
mation.

22 sbsm

Usage

sbsm(
Y,
x = NULL,
x_test = NULL,
psi = NULL,
laplace_approx = TRUE,
approx_g = FALSE,

nsave = 1000,
ngrid = 100,
verbose = TRUE
)
Arguments
\ n x 1 response vector
X n x 1 vector of observation points; if NULL, assume equally-spaced on [0,1]
x_test n_test x 1 vector of testing points; if NULL, assume equal to x
psi prior variance (inverse smoothing parameter); if NULL, sample this parameter

laplace_approx logical; if TRUE, use a normal approximation to the posterior in the definition
of the transformation; otherwise the prior is used

approx_g logical; if TRUE, apply large-sample approximation for the transformation
nsave number of Monte Carlo simulations
ngrid number of grid points for inverse approximations
verbose logical; if TRUE, print time remaining
Details

This function provides fully Bayesian inference for a transformed spline regression model using
Monte Carlo (not MCMC) sampling. The transformation is modeled as unknown and learned jointly
with the regression function (unless approx_g = TRUE, which then uses a point approximation).
This model applies for real-valued data, positive data, and compactly-supported data (the support
is automatically deduced from the observed y values). The results are typically unchanged whether
laplace_approx is TRUE/FALSE; setting it to TRUE may reduce sensitivity to the prior, while
setting it to FALSE may speed up computations for very large datasets.

Value

a list with the following elements:

» coefficients the posterior mean of the regression coefficients

» fitted.values the posterior predictive mean at the test points x_test

* post_theta: nsave x p samples from the posterior distribution of the regression coefficients
* post_ypred: nsave x n_test samples from the posterior predictive distribution at x_test

* post_g: nsave posterior samples of the transformation evaluated at the unique y values

simulate_tlm 23

¢ model: the model fit (here, sbsm)

as well as the arguments passed in.

Examples

Simulate some data:
n = 100 # sample size
x = sort(runif(n)) # observation points

Transform a noisy, periodic function:
y = g_inv_bc(
sin(2#pi*x) + sin(4xpi*x) + rnorm(n, sd = .5),
lambda = .5) # Signed square-root transformation

Fit the semiparametric Bayesian spline model:
fit = sbsm(y =y, x = x)
names(fit) # what is returned

Note: this is Monte Carlo sampling, so no need for MCMC diagnostics!

Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(@.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),
xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2]1, rev(pi_y[,11)),col="gray', border=NA)
lines(x, y, type='p")
lines(x, fitted(fit), 1lwd = 3)

simulate_tlm Simulate a transformed linear model

Description

Generate training data (X, y) and testing data (X_test, y_test) for a transformed linear model. The
covariates are correlated Gaussian variables. Half of the true regression coefficients are zero and
the other half are one. There are multiple options for the transformation, which define the support
of the data (see below).

Usage

simulate_tlm(
n7
P,
g_type = "beta”,
n_test = 1000,
heterosked = FALSE,
lambda = 1

24

Arguments

n

p

g_type
n_test
heterosked
lambda

Details

number of observations in the training data

number of covariates

type of transformation; must be one of beta, step, or box-cox
number of observations in the testing data

logical; if TRUE, simulate the latent data with heteroskedasticity

Box-Cox parameter (only applies for g_type = 'box-cox")

sir_adjust

The transformations vary in complexity and support for the observed data, and include the following
options: beta yields marginally Beta(0.1, 0.5) data supported on [0,1]; step generates a locally-
linear inverse transformation and produces positive data; and box-cox refers to the signed Box-
Cox family indexed by 1ambda, which generates real-valued data with examples including identity,
square-root, and log transformations.

Value

a list with the following elements:

* y: the response variable in the training data

* X: the covariates in the training data

* y_test: the response variable in the testing data

* X_test: the covariates in the testing data

* beta_true: the true regression coefficients

e g_true: the true transformation, evaluated at y

Examples

Simulate data:

dat = simulate_tlm(n = 100, p = 5, g_type = 'beta')
names(dat) # what is returned
hist(dat$y, breaks = 25) # marginal distribution

sir_adjust

Post-processing with importance sampling

Description

Given Monte Carlo draws from the surrogate posterior, apply sampling importance reweighting
(SIR) to correct for the true model likelihood.

sir_adjust

Usage

25

sir_adjust(fit, sir_frac = 0.3, nsims_prior = 100, verbose = TRUE)

Arguments
fit a fitted model object that includes
» coefficients the posterior mean of the regression coefficients
* post_theta: nsave x p samples from the posterior distribution of the re-
gression coefficients
* post_ypred: nsave x n_test samples from the posterior predictive distri-
bution at test points X_test
* post_g: nsave posterior samples of the transformation evaluated at the
unique y values
¢ model: the model fit (sblm or sbsm)
sir_frac fraction of draws to sample for SIR
nsims_prior number of draws from the prior
verbose logical; if TRUE, print time remaining
Details

The Monte Carlo sampling for sb1m and sbsm uses a surrogate likelihood for posterior inference,
which enables much faster and easier computing. SIR provides a correction for the actual (specified)
likelihood. However, this correction step is quite slow and typically does not produce any noticeable
discrepancies, even for small sample sizes.

Value

the fitted model object with the posterior draws subsampled based on the SIR adjustment

Note

SIR sampling is done WITHOUT replacement, so sir_frac is typically between 0.1 and 0.5. The
nsims_priors draws are used to approximate a prior expectation, but larger values can significantly
slow down this function.

Examples

Simulate some data:

dat = simulate_tlm(n
y = dat$y; X = dat$x
y_test = dat$y_test;

hist(y, breaks = 10)

=50, p =5, g_type = 'step')
training data
X_test = dat$X_test # testing data

marginal distribution

Fit the semiparametric Bayesian linear model:
fit = sblm(y =y, X = X, X_test = X_test)

names(fit) # what is

returned

26 uni.slice

Update with SIR:
fit_sir = sir_adjust(fit)

Prediction: unadjusted vs. adjusted?

Point estimates:

y_hat = fitted(fit)

y_hat_sir = fitted(fit_sir)
cor(y_hat, y_hat_sir) # similar

Interval estimates:
pi_y = t(apply(fit$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI
pi_y_sir = t(apply(fit_sir$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI

PI overlap (%):
overlaps = 100xsapply(1:1length(y_test), function(i){
innermost part
(min(pi_y[i,2], pi_y_sir[i,2]) - max(pi_y[i,1], pi_y_sir[i,11))/
outermost part
(max(pi_yl[i,2], pi_y_sir[i,2]) - min(pi_y[i,1], pi_y_sir[i,11))
»

summary (overlaps) # mostly close to 100%

Coverage of PIs on testing data (should be ~ 90%)
mean((pi_y[,1] <= y_test)*(pi_y[,2] >= y_test)) # unadjusted
mean((pi_y_sir[,1] <= y_test)*(pi_y_sir[,2] >= y_test)) # adjusted

Plot together with testing data:
plot(y_test, y_test, type='n', ylim = range(pi_y, pi_y_sir, y_test),
xlab = 'y_test', ylab = 'y_hat', main = paste('Prediction intervals: testing data'))
abline(@,1) # reference line
suppressWarnings(
arrows(y_test, pi_y[,1], y_test, pi_y[,2],
length=0.15, angle=90, code=3, col='gray',6 1lwd=2)
) # plot the PIs (unadjusted)
suppressWarnings(
arrows(y_test, pi_y_sir[,1], y_test, pi_y_sir[,2],
length=0.15, angle=90, code=3, col='darkgray', lwd=2)
) # plot the PIs (adjusted)
lines(y_test, y_hat, type='p', pch=2) # plot the means (unadjusted)
lines(y_test, y_hat_sir, type='p', pch=3) # plot the means (adjusted)

uni.slice Univariate Slice Sampler from Neal (2008)

Description

Compute a draw from a univariate distribution using the code provided by Radford M. Neal. The
documentation below is also reproduced from Neal (2008).

uni.slice

Usage

27

uni.slice(x@, g, w =1, m = Inf, lower = -Inf, upper = +Inf, gx@ = NULL)

Arguments
X0
g
w
m
lower
upper

gx0

Value

Initial point

Function returning the log of the probability density (plus constant)
Size of the steps for creating interval (default 1)

Limit on steps (default infinite)

Lower bound on support of the distribution (default -Inf)

Upper bound on support of the distribution (default +Inf)

Value of g(x0), if known (default is not known)

The point sampled, with its log density attached as an attribute.

Note

The log density function may return -Inf for points outside the support of the distribution. If a lower
and/or upper bound is specified for the support, the log density function will not be called outside

such limits.

Index

bgp_bc, 2
blm_bc, 4
bgr, 6

bsm_bc, 8

computeTimeRemaining, 10
contract_grid, 10

Fz_fun, 11

g _bc, 11
g_fun, 12
g_inv_approx, 13
g_inv_bc, 13

plot_pptest, 14
rank_approx, 14

sbgp, 4, 15
sblm, 6, 17, 25
sbqgr, 7, 19
sbsm, 9, 21, 25
simulate_tlm, 23
sir_adjust, 24

uni.slice, 26

28

	bgp_bc
	blm_bc
	bqr
	bsm_bc
	computeTimeRemaining
	contract_grid
	Fz_fun
	g_bc
	g_fun
	g_inv_approx
	g_inv_bc
	plot_pptest
	rank_approx
	sbgp
	sblm
	sbqr
	sbsm
	simulate_tlm
	sir_adjust
	uni.slice
	Index

