version 1.2.1
SVEMnet
implements Self-Validated Ensemble Models (SVEM,
Lemkus et al. 2021) and the SVEM whole model test (Karl 2024) using
Elastic Net regression via the glmnet
package Friedman et
al. (2010). This vignette provides an overview of the package’s
functionality and usage.
library(SVEMnet)
# Example data
data <- iris
svem_model <- SVEMnet(Sepal.Length ~ ., data = data, nBoot = 300)
coef(svem_model)
## Percent of Bootstraps Nonzero
## Sepal.Width 1.0000000
## Petal.Length 1.0000000
## Speciesvirginica 0.9333333
## Petal.Width 0.9166667
## Speciesversicolor 0.9066667
Generate a plot of actual versus predicted values:
Predict outcomes for new data using the predict()
function:
## 1 2 3 4 5 6 7 8
## 5.006624 4.741843 4.774083 4.868471 5.059580 5.383770 4.925820 5.027340
## 9 10 11 12 13 14 15 16
## 4.688886 4.896319 5.186208 5.101012 4.769690 4.548674 5.124060 5.501206
## 17 18 19 20 21 22 23 24
## 5.089080 4.978776 5.358661 5.211317 5.174684 5.130513 4.764891 5.038184
## 25 26 27 28 29 30 31 32
## 5.322029 4.889187 5.045316 5.080296 4.953667 4.995100 4.942143 4.971644
## 33 34 35 36 37 38 39 40
## 5.425881 5.377317 4.868471 4.700410 4.932951 5.087428 4.668170 5.027340
## 41 42 43 44 45 46 47 48
## 4.905103 4.269629 4.774083 5.042577 5.478158 4.713995 5.312837 4.847755
## 49 50 51 52 53 54 55 56
## 5.186208 4.900711 6.468361 6.293169 6.534901 5.503897 6.155016 6.137039
## 57 58 59 60 61 62 63 64
## 6.465621 5.124691 6.263668 5.614202 5.060211 5.966239 5.534485 6.309492
## 65 66 67 68 69 70 71 72
## 5.526945 6.194388 6.187256 5.872938 5.763606 5.591833 6.430642 5.768678
## 73 74 75 76 77 78 79 80
## 6.217164 6.312232 6.042651 6.141432 6.330208 6.499922 6.134300 5.377948
## 81 82 83 84 85 86 87 88
## 5.465205 5.419380 5.669898 6.442573 6.187256 6.371233 6.387557 5.798586
## 89 90 91 92 93 94 95 96
## 5.948263 5.609809 5.985303 6.288776 5.690614 5.071735 5.863066 6.049783
## 97 98 99 100 101 102 103 104
## 5.968979 6.042651 4.928783 5.842350 6.965208 6.151508 6.844059 6.653630
## 105 106 107 108 109 110 111 112
## 6.742539 7.359765 5.659258 7.169336 6.589150 7.197749 6.388441 6.298853
## 113 114 115 116 117 118 119 120
## 6.549370 5.944075 6.065225 6.452242 6.632914 7.829239 7.313261 5.924446
## 121 122 123 124 125 126 127 128
## 6.746931 6.029272 7.355373 6.032012 6.855583 7.107188 6.011295 6.190880
## 129 130 131 132 133 134 135 136
## 6.517130 6.909627 6.941187 7.663918 6.489282 6.315856 6.606153 6.935708
## 137 138 139 140 141 142 143 144
## 6.751323 6.685870 6.117208 6.528654 6.592455 6.251941 6.151508 6.894276
## 145 146 147 148 149 150
## 6.744192 6.272657 5.971923 6.356201 6.631827 6.338225
This is the serial version of the significance test. It is slower but the code is less complicated to read than the faster parallel version.
test_result <- svem_significance_test(Sepal.Length ~ ., data = data)
print(test_result)
plot(test_result)
SVEM Significance Test p-value:
[1] 0
Note that there is a parallelized version that runs much faster
# Simulate data
set.seed(1)
n <- 25
X1 <- runif(n)
X2 <- runif(n)
X3 <- runif(n)
X4 <- runif(n)
X5 <- runif(n)
#y only depends on X1 and X2
y <- 1 + X1 + X2 + X1 * X2 + X1^2 + rnorm(n)
data <- data.frame(y, X1, X2, X3, X4, X5)
# Perform the SVEM significance test
test_result <- svem_significance_test_parallel(
y ~ (X1 + X2 + X3)^2 + I(X1^2) + I(X2^2) + I(X3^2),
data = data
)
# View the p-value
print(test_result)
SVEM Significance Test p-value:
[1] 0.009399093
test_result2 <- svem_significance_test_parallel(
y ~ (X1 + X2 )^2 + I(X1^2) + I(X2^2),
data = data
)
# View the p-value
print(test_result2)
SVEM Significance Test p-value:
[1] 0.006475736
#note that the response does not depend on X4 or X5
test_result3 <- svem_significance_test_parallel(
y ~ (X4 + X5)^2 + I(X4^2) + I(X5^2),
data = data
)
# View the p-value
print(test_result3)
SVEM Significance Test p-value:
[1] 0.8968502
# Plot the Mahalanobis distances
plot(test_result,test_result2,test_result3)
There are many particular scenarios that we might be interested in focusing on in order to optimize SVEMnet settings. Perhaps a certain number of factors with a certain number of interactions, etc. However, when setting a default for a software, we want it to work well over a wide range of scenarios that might be encountered.
Our simulations target a response surface model in p factors. For a
selected density \(d\in[0,1]\),
n_active <- max(1, floor(p * d))
of the \(\frac{(p+1)(p+2)}{2}\) parameters in the
RSM are set to rexp(1)-rexp(1)
. There are n
points in the Latin hypercube design. This is not an endorsement of the
Latin hypercube method for designed experiments: it is merely used as a
quick way to generate space filling points for the simulation. It would
also be possible to run the simulation using optimal designs or other
space filling approaches (such as Fast Flexible Filling, Jones and
Lekivetz (2014)). However, for supersaturated settings (where \(n<\frac{(p+1)(p+2)}{2}\)) the optimal
designs would require additional work to specify, and that is not needed
for this simulation.
The models are trained on n
observations and compared to
an independent test set with n_holdout
observations.
# Define vectors for p, d, n, sd
p_values <- seq(3, 6, 1) # Number of parameters
d_values <- seq(0.1, 0.9, 0.1) # Density (proportion of active parameters)
n_values <- seq(15, 50, 5) # Number of design points
sd_values <- c(.25,0.5, 1, 1.5) # Standard deviations of noise
nSim <- 20 # Number of simulations per setting
n_holdout <- 1000 # Number of holdout points
# Create a grid of all combinations of p, d, n, sd
param_grid <- expand.grid(p = p_values, d = d_values, n = n_values, sd = sd_values)
First we compare the log root mean squared error (LRMSE) on the
holdout set for four different models corresponding to the combinations
of objective={"wAIC","wSSE"}
and
debias={TRUE,FALSE}
. Lemkus (2021) uses
objective={"wSSE"}
and debias=FALSE
. JMP uses
objective={"wSSE"}
and debias=TRUE
. Based on
the simulations below, SVEMnet
defaults to
objective={"wAIC"}
and debias=FALSE
. Note that
this is not a commentary on JMP’s settings or a statement about globally
optimal SVEM settings. These are simply the combinations that
SVEMnet
seems to work best with over the tested
scenarios.
GPT o1-preview
. The first plot shows the
test LRMSE for each of the four models.
objective="wAIC"
and debias=FALSE
performs best in SVEMnet
.
The second simulation compares performance across the
weight_scheme
argument of SVEMnet
.
weight_scheme="Identity"
corresponds to the single-shot
(traditional) Lasso (when glmnet_alpha=1
) fit on the
training data. It is fit with nBoot=1
.
weight_scheme="FWR"
corresponds to fractional weight
regression (Xu et al. (2020)) and uses the same exponential weights for
the training data as weight_scheme="SVEM"
, but it uses the
exact same weights for validation and does not compute anti-correlated
validation weights as SVEM does (Lemkus et al. (2021)).
SVEM
and Identity
are used with
nBoot=200
and all models are fit with
objective="wAIC"
and debias=FALSE
.
The script for this simulation is available here. Note that this
script was generated with GPT o1-preview
. The first plot
shows the test LRMSE for each of the three models.
p=6
there are 28 parameters in the RSM, and
when d=0.9
, 25 of them are active. Some of the simulations
include as few as 15 runs, so this is an extreme case of fitting a
supersaturated design where a larger-than-expected proportion of the
parameters are active. Interested readers are encouraged to modify the
simulation code to focus on scenarios of more personal interest, perhaps
focusing on less extreme situations.
Lemkus, T., Gotwalt, C., Ramsey, P., & Weese, M. L.
(2021). Self-Validated Ensemble Models for Elastic Net
Regression.
Chemometrics and Intelligent Laboratory Systems, 219,
104439.
DOI: 10.1016/j.chemolab.2021.104439
Karl, A. T. (2024). A Randomized Permutation
Whole-Model Test for SVEM.
Chemometrics and Intelligent Laboratory Systems, 249,
105122.
DOI: 10.1016/j.chemolab.2024.105122
Friedman, J. H., Hastie, T., & Tibshirani, R.
(2010). Regularization Paths for Generalized Linear Models
via Coordinate Descent.
Journal of Statistical Software, 33(1), 1–22.
DOI: 10.18637/jss.v033.i01
Gotwalt, C., & Ramsey, P. (2018). Model
Validation Strategies for Designed Experiments Using Bootstrapping
Techniques With Applications to Biopharmaceuticals.
JMP Discovery Conference.
Link
Ramsey, P., Gaudard, M., & Levin, W. (2021).
Accelerating Innovation with Space-Filling Mixture Designs, Neural
Networks, and SVEM.
JMP Discovery Conference.
Link
Ramsey, P., & Gotwalt, C. (2018). Model
Validation Strategies for Designed Experiments Using Bootstrapping
Techniques With Applications to Biopharmaceuticals.
JMP Discovery Summit Europe.
Link
Ramsey, P., Levin, W., Lemkus, T., & Gotwalt, C.
(2021). SVEM: A Paradigm Shift in Design and Analysis of
Experiments.
JMP Discovery Summit Europe.
Link
Ramsey, P., & McNeill, P. (2023). CMC,
SVEM, Neural Networks, DOE, and Complexity: It’s All About
Prediction.
JMP Discovery Conference.
Karl, A., Wisnowski, J., & Rushing, H.
(2022). JMP Pro 17 Remedies for Practical Struggles with
Mixture Experiments.
JMP Discovery Conference.
Link
Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker,
W. Q. (2020). Applications of the Fractional-Random-Weight
Bootstrap.
The American Statistician, 74(4), 345–358.
Link
Karl, A. T. (2024). SVEMnet: Self-Validated
Ensemble Models with Elastic Net Regression.
R package version 1.1.1.
JMP Help Documentation Overview of
Self-Validated Ensemble Models.
Link