--- title: "SPLICE: A Synthetic Paid Loss and Incurred Cost Experience Simulator" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{SPLICE: A Synthetic Paid Loss and Incurred Cost Experience Simulator} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` This vignette aims to illustrate how the `SPLICE` package can be used to generate the case estimates of incurred losses of individual claims. `SPLICE` (**S**ynthetic **P**aid **L**oss and **I**ncurred **C**ost **E**xperience) is built on an existing simulator of **paid** claim experience called [`SynthETIC`](https://CRAN.R-project.org/package=SynthETIC), which offers flexible modelling of occurrence, notification, as well as the timing and magnitude of individual partial payments (see the [package documentation and vignette](https://CRAN.R-project.org/package=SynthETIC) for a detailed example on how to use the package to simulate paid claims experience). `SPLICE` enables the modelling of incurred loss estimates, via the following three modules: 1. [*Major Revision Histories*](#majRev): [Frequency](#majRev_freq), [Time](#majRev_time) and [Size](#majRev_size) of major revisions of incurred losses 2. [*Minor Revision Histories*](#minRev): [Frequency](#minRev_freq), [Time](#minRev_time) and [Size](#minRev_size) of minor revisions of incurred losses 3. [*Development of Case Estimates*](#claim_history): Consolidation of payments and incurred revisions, including optional adjustment for inflation in the case estimates. Set Up --- ```{r setup} library(SPLICE) set.seed(20201006) ref_claim <- return_parameters()[1] # 200,000 time_unit <- return_parameters()[2] # 0.25 ``` For the definition and functionality of `ref_claim` and `time_unit`, we refer to the documentation of [`SynthETIC`](https://CRAN.R-project.org/package=SynthETIC). For this demo, we will start with the paid losses simulated by the example implementation of `SynthETIC`: ```{r} test_claims <- SynthETIC::test_claims_object ``` and simulate the case estimates of incurred losses of the `r sum(test_claims$frequency_vector)` indidual claims included in the `claims` object above. 0. Default Implementation --- Sections 1-3 introduce the three modelling steps in detail and include extensive examples on how to replace the default implementation with sampling distributions deemed appropriate by the individual users of the program. For those who prefer to stick to the default assumptions, the following code is all that is required to generate the full incurred history: ```{r} # major revisions major <- claim_majRev_freq(test_claims) major <- claim_majRev_time(test_claims, major) major <- claim_majRev_size(major) # minor revisions minor <- claim_minRev_freq(test_claims) minor <- claim_minRev_time(test_claims, minor) minor <- claim_minRev_size(test_claims, major, minor) # development of case estimates test <- claim_history(test_claims, major, minor) test_inflated <- claim_history(test_claims, major, minor, base_inflation_vector = rep((1 + 0.02)^(1/4) - 1, times = 80)) # transactional data test_incurred_dataset_noInf <- generate_incurred_dataset(test_claims, test) test_incurred_dataset_inflated <- generate_incurred_dataset(test_claims, test_inflated) # incurred cumulative triangles incurred_inflated <- output_incurred(test_inflated, incremental = FALSE) ``` 1. Major Revisions {#majRev} --- This section introduces a suite of functions that works together to simulate, in sequential order, the (1) frequency, (2) time, and (3) size of major revisions of incurred loss, for each of the claims occurring in each of the occurrence periods. In particular, `claim_majRev_freq()` sets up the structure of the major revisions: a nested list such that the *j*th component of the *i*th sub-list is a list of information on major revisions of the *j*th claim of occurrence period *i*. The "unit list" (i.e. the smallest, innermost sub-list) contains the following components: ------------------------------------------------------------------------------- Name Description ----------------- ------------------------------------------------------------ `majRev_freq` Number of major revisions of incurred loss; see [`claim_majRev_freq()`](#majRev_freq) `majRev_time` Time of major revisions (from claim notification); see [`claim_majRev_time()`](#majRev_time) `majRev_factor` Major revision multiplier of **incurred loss**; see [`claim_majRev_size()`](#majRev_size) `majRev_atP` An indicator, `1` if the last major revision occurs at the time of the last major payment (i.e. second last payment), `0` otherwise; see [`claim_majRev_time()`](#majRev_time) ------------------------------------------------------------------------------- ## 1.1 Frequency of Major Revisions {#majRev_freq} `claim_majRev_freq()` generates the number of major revisions associated with a particular claim, from a user-defined random generation function. Users are free to choose *any* distribution (through the argument `rfun`), whether it be a pre-defined distribution in `R`, or more advanced ones from packages, or a proper user-defined function, to better match their own claim experience. Let $K$ represent the number of major revisions associated with a particular claim. The notification of a claim is considered as a major revision, so all claims have at least 1 major revision ($K \ge 1$). ### Example 1.1.1 Zero-truncated Poisson distribution {#ex1.1.1} One possible sampling distribution for this is the zero-truncated Poisson distribution from the `actuar` package. `SPLICE` by default assumes the (removable) dependence of frequency of major revisions on claim size, which means that the user can specify the `lambda` parameter in `actuar::rztpois` as a `paramfun` (*param*eter *fun*ction) of `claim_size` (and possibly more, see [Example 1.1.2](#ex1.1.2)). ```{r} ## paramfun input # lambda as a function of claim size no_majRev_param <- function(claim_size) { majRevNo_mean <- pmax(1, log(claim_size / 15000) - 2) c(lambda = majRevNo_mean) } ## implementation and output major_test <- claim_majRev_freq( test_claims, rfun = actuar::rztpois, paramfun = no_majRev_param) # show the distribution of number of major revisions table(unlist(major_test)) ``` ### Example 1.1.2 Additional dependencies {#ex1.1.2} Like [`SynthETIC`](https://CRAN.R-project.org/package=SynthETIC), users of `SPLICE` are able to add further dependencies in their simulation. This is illustrated in the example below. Suppose we would like to add the additional dependence of `claim_majRev_freq` (number of major revisions) on the number of partial payments of the claim - which is not natively included in `SPLICE` default setting. For example, let's consider the following parameter function: ```{r} ## paramfun input # an extended parameter function majRevNo_param <- function(claim_size, no_payment) { majRevNo_mean <- pmax(0, log(claim_size / 1500000)) + no_payment / 10 c(lambda = majRevNo_mean) } ``` As this parameter function is dependent on `no_payment`, it should not come at a surprise that we need to supply the number of partial payments when calling `claim_majRev_freq()`. We need to make sure that the argument names are matched exactly (`no_payment` in this example) and that the input is specified as a vector of simulated quantities (not a list). ```{r} ## implementation and output no_payments_vect <- unlist(test_claims$no_payments_list) # sample the frequency of major revisions from zero-truncated Poisson # with parameters above major_test <- claim_majRev_freq( test_claims, rfun = actuar::rztpois, paramfun = majRevNo_param, no_payment = no_payments_vect) # show the distribution of number of major revisions table(unlist(major_test)) ``` ### Example 1.1.3 Default implementation {#ex1.1.3} The default `claim_majRev_freq()` assumes that no additional major revisions will occur for claims of size smaller than or equal to a `claim_size_benchmark`. For claims above this threshold, a maximum of 3 major revisions can occur and the larger the claim size, the more likely there will be more major revisions. **There is no need to specify a sampling distribution if the user is happy with the default specification.** This example is mainly to demonstrate how the default function works, and at the same time, to provide an example that one can modify to input a random sampling distribution of their choosing. ```{r} ## input # package default function for frequency of major revisions dflt.majRev_freq_function <- function( n, claim_size, claim_size_benchmark = 0.075 * ref_claim) { # construct the range indicator test <- (claim_size > claim_size_benchmark) # if claim_size <= claim_size_benchmark # "small" claims assumed to have no major revisions except at notification no_majRev <- rep(1, n) # if claim_size is above the benchmark # probability of 2 major revisions, increases with claim size Pr2 <- 0.1 + 0.3 * min(1, (claim_size[test] - 0.075 * ref_claim)/(0.925 * ref_claim)) # probability of 3 major revisions, increases with claim size Pr3 <- 0.5 * min(1, max(0, claim_size[test] - 0.25 * ref_claim)/(0.75 * ref_claim)) # probability of 1 major revision i.e. only one at claim notification Pr1 <- 1 - Pr2 - Pr3 no_majRev[test] <- sample( c(1, 2, 3), size = sum(test), replace = T, prob = c(Pr1, Pr2, Pr3)) no_majRev } ``` Since the random function directly takes `claim_size` as an input, no additional parameterisation is required (unlike in Examples [1](#ex1.1.1) and [2](#ex1.1.2), where we first need a `paramfun` that turns the `claim_size` into the `lambda` parameter required in a zero-truncated Poisson distribution). Here we can simply run `claim_majRev_freq()` without inputting a `paramfun`. ```{r} ## implementation and output # simulate the number of major revisions major <- claim_majRev_freq( claims = test_claims, rfun = dflt.majRev_freq_function ) # show the distribution of number of major revisions table(unlist(major)) # view the major revision history of the first claim in the 1st occurrence period # note that the time and size of the major revisions are yet to be generated major[[1]][[1]] ``` Note that `SPLICE` by default assumes the (removable) dependence of frequency of major revisions on claim size, hence there is no need to supply any additional arguments to `claim_majRev_freq()`, unlike in [Example 1.1.2](#ex1.1.2). If one would like to keep the structure of the default sampling function but modify the benchmark value, they may do so via e.g. ```{r} major_test <- claim_majRev_freq( claims = test_claims, claim_size_benchmark = 30000 ) ``` ## 1.2 Time of Major Revisions {#majRev_time} `claim_majRev_time()` generates the epochs of the major revisions (time measured from claim notification). It takes a very similar structure as [`claim_majRev_freq()`](#majRev_freq), allowing users to input a sampling distribution via `rfun` and a parameter function which relates the parameter(s) of the distribution to selected claim characteristics. Let $\tau_k$ represent the epoch of the $k$th major revision (time measured from claim notification), $k = 1, ..., K$. As the notification of a claim is considered a major revision itself, we have $\tau_1 = 0$ for all claims. ### Example 1.2.1 Modified uniform distribution {#ex1.2.1} One simplistic option is to use a modified version of the uniform distribution (modified such that the first major revision always occurs at time 0 i.e. at claim notification). `majRev_time_paramfun` in the example below specifies the `min` and `max` parameters for an individual claim as a function of `setldel` (settlement delay). Note that `SPLICE` by default assumes the (removable) dependence of timing of major revisions on claim size, settlement delay, and the partial payment times. Thanks to that, there is no need to supply any additional arguments to `claim_majRev_time()`. Users who wish to add further dependencies to the simulator can refer to [Example 1.1.2](#ex1.1.2). ```{r} ## input majRev_time_rfun <- function(n, min, max) { # n = number of major revisions of an individual claim majRev_time <- vector(length = n) majRev_time[1] <- 0 # first major revision at notification if (n > 1) { majRev_time[2:n] <- sort(stats::runif(n - 1, min, max)) } return(majRev_time) } majRev_time_paramfun <- function(setldel, ...) { # setldel = settlement delay c(min = setldel/3, max = setldel) } ## implementation and output major_test <- claim_majRev_time( test_claims, major, rfun = majRev_time_rfun, paramfun = majRev_time_paramfun ) major_test[[1]][[1]] ``` ### Example 1.2.2 Default implementation {#ex1.2.2} The default implementation takes into account much complexity from the real-life claim process. It assumes that with a positive probability, the last major revision for a claim may coincide with the second last partial payment (which is usually the major settlement payment). In such cases, `majRev_atP` would be set to 1 indicating that there is a major revision simultaneous with the penultimate payment. The epochs of the remaining major revisions are sampled from triangular distributions with maximum density at the earlier part of the claim's lifetime. ```{r} ## package default function for time of major revisions dflt.majRev_time_function <- function( # n = number of major revisions # setldel = settlement delay # penultimate_delay = time from claim notification to second last payment n, claim_size, setldel, penultimate_delay) { majRev_time <- rep(NA, times = n) # first revision at notification majRev_time[1] <- 0 if (n > 1) { # if the claim has multiple major revisions # the probability of having the last revision exactly at the second last partial payment p <- 0.2 * min(1, max(0, (claim_size - ref_claim) / (14 * ref_claim))) at_second_last_pmt <- sample(c(0, 1), size = 1, replace = TRUE, prob = c(1-p, p)) # does the last revision occur at the second last partial payment? if (at_second_last_pmt == 0) { # -> no revision at second last payment majRev_time[2:n] <- sort(rtri(n - 1, min = setldel/3, max = setldel, mode = setldel/3)) } else { # -> yes, revision at second last payment majRev_time[n] <- penultimate_delay if (n > 2) { majRev_time[2:(n-1)] <- sort( rtri(n - 2, min = majRev_time[n]/3, max = majRev_time[n], mode = majRev_time[n]/3)) } } } majRev_time } ``` Note that `rtri` is a function to generate random numbers from a triangular distribution that is included as part of the `SPLICE` package. `claim_size` and `setldel` are both directly accessible claim characteristics, but we need `paramfun` to take care of the computation of `penultimate_delay` as a function of the partial payment delays that we can access. ```{r} dflt.majRev_time_paramfun <- function(payment_delays, ...) { c(penultimate_delay = sum(payment_delays[1:length(payment_delays) - 1]), ...) } ``` ```{r} ## implementation and output major <- claim_majRev_time( claims = test_claims, majRev_list = major, # we will update the previous major list rfun = dflt.majRev_time_function, paramfun = dflt.majRev_time_paramfun ) # view the major revision history of the first claim in the 1st occurrence period # observe that we have now updated the time of major revisions major[[1]][[1]] ``` The above sampling distribution has been included as the default. **There is no need to reproduce the above code if the user is happy with this default distribution.** A simple equivalent to the above code is just ```{r, eval=FALSE} major <- claim_majRev_time(claims = test_claims, majRev_list = major) ``` This example is here only to demonstrate how the default function operates. ## 1.3 Size of Major Revisions {#majRev_size} `claim_majRev_size()` generates the sizes of the major revisions. The major revision multipliers apply to the incurred loss estimates, that is, a revision multiplier of 2.54 means that at the time of the major revision the incurred loss increases by a factor of 2.54. We highlight this as in the case of minor revisions, the multipliers will instead apply to outstanding claim amounts, see [claim_minRev_size()](#minRev_size). The reason for this differentiation is that major revisions represent a total change of perspective on ultimate incurred cost, whereas minor revisions respond more to matters of detail, causing the case estimator to apply a revision factor to the estimate of outstanding payments. ### Example 1.3.1 Gamma distribution {#ex1.3.1} Suppose that we believe the major revision multipliers follow a gamma distribution with parameters dependent on the size of the claim. Then we can set up the simulation in the following way: ```{r} ## input majRev_size_rfun <- function(n, shape, rate) { # n = number of major revisions of an individual claim majRev_size <- vector(length = n) majRev_size[1] <- 1 # first major revision at notification if (n > 1) { majRev_size[2:n] <- stats::rgamma(n - 1, shape, rate) } majRev_size } majRev_size_paramfun <- function(claim_size) { shape <- max(log(claim_size / 5000), 1) rate <- 10 / shape c(shape = shape, rate = rate) } ``` The [default implementation of `claim_majRev_size()`](#ex1.3.2) assumes no further dependencies on claim characteristics. Hence we need to supply `claim_size` as an additional argument when running `claim_majRev_size()` when the above set up. ```{r} ## implementation and output claim_size_vect <- unlist(test_claims$claim_size_list) major_test <- claim_majRev_size( majRev_list = major, rfun = majRev_size_rfun, paramfun = majRev_size_paramfun, claim_size = claim_size_vect ) # view the major revision history of the first claim in the 1st occurrence period # observe that we have now updated the size of major revisions major_test[[1]][[1]] ``` ### Example 1.3.2 Default implementation {#ex1.3.2} The default implementation samples the major revision multipliers from lognormal distributions: ```{r} ## input # package default function for sizes of major revisions dflt.majRev_size_function <- function(n) { majRev_factor <- rep(NA, times = n) # set revision size = 1 for first revision (i.e. the one at notification) majRev_factor[1] <- 1 if (n > 1) { # if the claim has multiple major revisions majRev_factor[2] <- stats::rlnorm(n = 1, meanlog = 1.8, sdlog = 0.2) if (n > 2) { # the last revision factor depends on what happened at the second major revision mu <- 1 + 0.07 * (6 - majRev_factor[2]) majRev_factor[3] <- stats::rlnorm(n = 1, meanlog = mu, sdlog = 0.1) } } majRev_factor } ## implementation and output major <- claim_majRev_size( majRev_list = major, rfun = dflt.majRev_size_function ) # view the major revision history of the first claim in the 1st occurrence period # observe that we have now updated the size of major revisions major[[1]][[1]] ``` For this particular claim record, we observe 3 major revisions: - First one at claim notification with revision size $g_1 =$ `r major[[1]][[1]]$majRev_factor[1]` (note that the notification of a claim is considered as a major revision, so all claims have at least 1 major revision); - Second one at delay $\tau_2 =$ `r major[[1]][[1]]$majRev_time[2]` from notification and has revision size of $g_2 =$ `r major[[1]][[1]]$majRev_factor[2]` on the incurred loss; - Third one at delay $\tau_3 =$ `r major[[1]][[1]]$majRev_time[3]` from notification and has revision size of $g_3 =$ `r major[[1]][[1]]$majRev_factor[3]` on the incurred loss. As commented in the paper, a claim may experience up to two major revisions in addition to the initial one, but the second, if it occurs at all, is likely to be smaller than the first. 2. Minor Revisions {#minRev} --- Compared to the major revisions, the simulation of minor revisions may require slightly more complicated input specification, as we need to separate the case of minor revisions that occur simultaneously with a partial payment (`minRev_atP`) and the ones that do not. Similar to the case of major revisions, the suite of functions under this heading run in sequential order to simulate the (1) frequency, (2) time, and (3) size of minor revisions of outstanding claim payments, for each of the claims occurring in each of the occurrence periods. In particular, `claim_minRev_freq()` sets up the structure of the minor revisions: a nested list such that the *j*th component of the *i*th sub-list is a list of information on minor revisions of the *j*th claim of occurrence period *i*. The "unit list" contains the following components: ------------------------------------------------------------------------------- Name Description ----------------------- ------------------------------------------------------ `minRev_atP` A logical vector indicating whether there is a minor revision at each partial payment; see [`claim_minRev_freq()`](#minRev_freq) `minRev_freq_atP` (`minRev_freq_notatP`) Number of minor revisions that occur (or do not occur) simultaneously with a partial payment. `minRev_freq_atP` is numerically equal to the sum of `minRev_atP` `minRev_time_atP`, (`minRev_time_notatP`) Time of minor revisions that occur (or do not occur) simultaneously with a partial payment (time measured from claim notification); see [`claim_minRev_time()`](#minRev_time) `minRev_factor_atP`, (`minRev_factor_notatP`) Minor revision multiplier of **outstanding claim payments** for revisions at partial payments and at any other times, respectively; see [`claim_minRev_size()`](#minRev_size) ------------------------------------------------------------------------------- ## 2.1 Frequency of Minor Revisions {#minRev_freq} Minor revisions may occur simultaneously with a partial payment, or at any other time: * For the former case, we sample the occurrence of minor revisions as Bernoulli random variables with a probability parameter `prob_atP` (defaults to 1/2); * For the latter case, users have the option to specify an `rfun_notatP` for simulation and a `paramfun_notatP` to input the parameters for the sampling distribution, much in the same way as [the analogous case of major revisions](#majRev_freq). The default implementation assumes a geometric distribution with mean = `min(3, setldel / 4)` and is illustrated below. ### Example 2.1.1 Default implementation {#ex2.1.1} ```{r} ## input # package default function for frequency of minor revisions NOT at partial payments dflt.minRev_freq_notatP_function <- function(n, setldel) { # setldel = settlement delay minRev_freq_notatP <- stats::rgeom(n, prob = 1 / (min(3, setldel/4) + 1)) minRev_freq_notatP } ## implementation and output minor <- claim_minRev_freq( test_claims, prob_atP = 0.5, rfun_notatP = dflt.minRev_freq_notatP_function) # view the minor revision history of the 10th claim in the 1st occurrence period minor[[1]][[10]] ``` An equivalent way of setting up the same structure using `paramfun`: ```{r eval=FALSE} minRev_freq_notatP_paramfun <- function(setldel) { c(prob = 1 / (min(3, setldel/4) + 1)) } minor <- claim_minRev_freq( test_claims, prob_atP = 0.5, rfun_notatP = stats::rgeom, paramfun_notatP = minRev_freq_notatP_paramfun) ``` Again the above example is only for illustrative purposes and users can run the default without explicitly spelling out the sampling distributions as above: ```{r eval=FALSE} minor <- claim_minRev_freq(claims = test_claims) ``` ### Example 2.1.2 Alternative sampling distribution {#ex2.1.2} Suppose we believe that there should be no minor revisions at partial payments (`prob_atP = 0`) and that the number of minor revisions should follow a geometric distribution but with a higher mean. `SPLICE` can easily account for these assumptions through the following code. ```{r} minRev_freq_notatP_paramfun <- function(setldel) { c(prob = 1 / (min(3, setldel/4) + 2)) } minor_test <- claim_minRev_freq( test_claims, prob_atP = 0, rfun_notatP = stats::rgeom, paramfun_notatP = minRev_freq_notatP_paramfun) minor_test[[1]][[10]] ``` ## 2.2 Time of Minor Revisions {#minRev_time} `claim_minRev_time()` generates the epochs of the minor revisions (time measured from claim notification). Note that there is no need to specify a random sampling function for minor revisions that occur simultaneously with a partial payment because the revision times simply coincide with the epochs of the relevant partial payments. For revisions outside of the partial payments, users are free to input a sampling distribution via `rfun_notatP` and a parameter function `paramfun_notatP` which relates the parameter(s) of the distribution to selected claim characteristics. ### Example 2.2.1 Default implementation {#ex2.2.1} By default we assume that the epochs of the minor revision can be sampled from a uniform distribution: ```{r} ## input # package default function for time of minor revisions that do not coincide with a payment dflt.minRev_time_notatP <- function(n, setldel) { sort(stats::runif(n, min = setldel/6, max = setldel)) } ## implementation and output minor <- claim_minRev_time( claims = test_claims, minRev_list = minor, # we will update the previous minor list rfun_notatP = dflt.minRev_time_notatP ) # view the minor revision history of the 10th claim in the 1st occurrence period # observe that we have now updated the time of minor revisions minor[[1]][[10]] ``` ### Example 2.2.2 Alternative sampling distribution {#ex2.2.2} Let's consider an alternative example where we believe the epochs of minor revisions better follow a triangular distribution (see `?triangular` from `SPLICE`). This can be set up as follows: ```{r} ## input minRev_time_notatP_rfun <- function(n, setldel) { # n = number of minor revisions # setldel = settlement delay sort(rtri(n, min = setldel/6, max = setldel, mode = setldel/6)) } ## implementation and output minor_test <- claim_minRev_time( claims = test_claims, minRev_list = minor, # we will update the previous minor list rfun_notatP = minRev_time_notatP_rfun ) # view the minor revision history of the 10th claim in the 1st occurrence period # observe that we have now updated the time of minor revisions minor_test[[1]][[10]] ``` ## 2.3 Size of Minor Revisions {#minRev_size} `claim_minRev_size()` generates the sizes of the minor revisions. Unlike the major revision multipliers which apply to the **incurred loss estimates**, the minor revision multipliers apply to the case estimate of **outstanding claim payments** i.e. a revision multiplier of 2.54 means that at the time of the minor revision the outstanding claims payment increases by a factor of 2.54. The reason for making this differentiation is briefly explained [here](#majRev_size). `SPLICE` assumes a common sampling distribution for minor revisions that occur at partial payments and those that occur at any other times. But users may provide separate parameter functions (`paramfun_atP` and `paramfun_notatP`) for the two cases. ### Example 2.3.1 Default implementation {#ex2.3.1} In the default setting, we incorporate sampling dependence on the delay from notification to settlement, the delay from notification to the subject minor revisions, and the history of major revisions (in particular, the time of the second major revision). Let $\tau$ denote the delay from notification to the epoch of the minor revision, and $w$ the settlement delay. Then - For $\tau \le \frac{w}{3}$, the revision multiplier is sampled from a lognormal distribution with parameters `meanlog = 0.15` and `sdlog = 0.05` if preceded by a 2nd major revision, `sdlog = 0.1` otherwise; - For $\frac{w}{3} < \tau \le \frac{2w}{3}$, the revision multiplier is sampled from a lognormal distribution with parameters `meanlog = 0` and `sdlog = 0.05` if preceded by a 2nd major revision, `sdlog = 0.1` otherwise; - For $\tau > \frac{2w}{3}$, the revision multiplier is sampled from a lognormal distribution with parameters `meanlog = -0.1` and `sdlog = 0.05` if preceded by a 2nd major revision, `sdlog = 0.1` otherwise. Note that minor revisions tend to be upward in the early part of a claim’s life, and downward in the latter part. ```{r} ## input # package default function for the size of minor revisions dflt.minRev_size <- function( # n = number of minor revisions # minRev_time = epochs of the minor revisions (from claim notification) # majRev_time_2nd = epoch of 2nd major revision (from claim notification) # setldel = settlement delay n, minRev_time, majRev_time_2nd, setldel) { k <- length(minRev_time) minRev_factor <- vector(length = k) if (k >= 1) { for (i in 1:k) { curr <- minRev_time[i] if (curr <= setldel/3) { meanlog <- 0.15 } else if (curr <= (2/3) * setldel) { meanlog <- 0 } else { meanlog <- -0.1 } sdlog <- ifelse(curr > majRev_time_2nd, 0.05, 0.1) minRev_factor[i] <- stats::rlnorm(n = 1, meanlog, sdlog) } } minRev_factor } ``` While `setldel` (settlement delay) is a directly accessible claim characteristic, we need `paramfun` to take care of the extraction and computation of `majRev_time_2nd` and `minRev_time` as a function of the revision lists that we can access. ```{r} # parameter function for minor revision at payments minRev_size_param_atP <- function(major, minor, setldel) { list(minRev_time = minor$minRev_time_atP, majRev_time_2nd = ifelse( # so it always holds minRev_time < majRev_time_2nd is.na(major$majRev_time[2]), setldel + 1, major$majRev_time[2]), setldel = setldel) } # parameter function for minor revisions NOT at payments minRev_size_param_notatP <- function(major, minor, setldel) { list(minRev_time = minor$minRev_time_notatP, majRev_time_2nd = ifelse( # so it always holds minRev_time < majRev_time_2nd is.na(major$majRev_time[2]), setldel + 1, major$majRev_time[2]), setldel = setldel) } ``` ```{r} ## implementation and output minor <- claim_minRev_size( claims = test_claims, majRev_list = major, minRev_list = minor, rfun = dflt.minRev_size, paramfun_atP = minRev_size_param_atP, paramfun_notatP = minRev_size_param_notatP ) # view the minor revision history of the 10th claim in the 1st occurrence period # observe that we have now updated the size of minor revisions minor[[1]][[10]] ``` For this particular claim record, we observe `r minor[[1]][[10]]$minRev_freq_atP` minor revisions that coincide with a payment and `r minor[[1]][[10]]$minRev_freq_notatP` minor revisions outside of the partial payment times. ### Example 2.3.2 Uniform distribution for minor revision multipliers {#ex2.3.2} For illustrative purposes, let's now assume that the minor revision multipliers should be sampled from a uniform distribution. ```{r} ## input paramfun_atP <- function(claim_size, ...) { c(min = pmin(1, pmax(log(claim_size / 15000), 0.5)), max = pmin(1, pmax(log(claim_size / 15000), 0.5)) + 1) } paramfun_notatP <- paramfun_atP ## implementation and output claim_size_vect <- unlist(test_claims$claim_size_list) minor_test <- claim_minRev_size( test_claims, major, minor, rfun = stats::runif, paramfun_atP, paramfun_notatP, claim_size = claim_size_vect) minor_test[[1]][[10]] ``` 3. Development of Case Estimates {#claim_history} --- This section requires no additional input specification from the program user (except the quarterly inflation rates - which should match with what was used in `SynthETIC::claim_payment_inflation()` when generating the inflated amount of partial payments) and simply consolidates the partial payments and the incurred revisions generated above, subject to some additional revision constraints (`?claim_history` for details). The end product is a full transactional history of the case estimates of the individual claims over its lifetime. We can choose to exclude (default) or include adjustment for inflation: ### Implementation and Output ```{r} # exclude inflation (by default) result <- claim_history(test_claims, major, minor) # include inflation result_inflated <- claim_history( test_claims, major, minor, base_inflation_vector = rep((1 + 0.02)^(1/4) - 1, times = 80)) ``` Observe how the results differ between the case estimates with/without inflation: ```{r} data <- generate_incurred_dataset(test_claims_object, result) str(data) head(data, n = 9) data_inflated <- generate_incurred_dataset(test_claims_object, result_inflated) str(data_inflated) head(data_inflated, n = 9) ``` Note that the above `data` and `data_inflated` datasets are included as part of the package as `test_incurred_dataset_noInf` and `test_incurred_dataset_inflated`: ```{r} str(test_incurred_dataset_noInf) str(test_incurred_dataset_inflated) ``` Output: Chain-Ladder Incurred Triangles --- `SPLICE` also provides an option to produce the incurred triangles aggregated by accident and development periods: ```{r} square_inc <- output_incurred(result) square_cum <- output_incurred(result, incremental = F) square_inflated_inc <- output_incurred(result_inflated) square_inflated_cum <- output_incurred(result_inflated, incremental = F) yearly_inc <- output_incurred(result, aggregate_level = 4) yearly_cum <- output_incurred(result, aggregate_level = 4, incremental = F) yearly_cum ``` We can also set `future = FALSE` to hide the future triangle and perform a chain-ladder analysis: ```{r} # output the past cumulative triangle cumtri <- output_incurred(result, aggregate_level = 4, incremental = FALSE, future = FALSE) # calculate the age to age factors selected <- vector() J <- nrow(cumtri) for (i in 1:(J - 1)) { # use volume weighted age to age factors selected[i] <- sum(cumtri[, (i + 1)], na.rm = TRUE) / sum(cumtri[1:(J - i), i], na.rm = TRUE) } # complete the triangle CL_prediction <- cumtri for (i in 2:J) { for (j in (J - i + 2):J) { CL_prediction[i, j] <- CL_prediction[i, j - 1] * selected[j - 1] } } CL_prediction ```