## ----k2, eval = T, echo=TRUE, warning = FALSE, message = FALSE, error = FALSE---- library(SIMICO) # Set two outcomes k = 2 # Set number of observations n = 5000 # Set number of covariates p = 2 # Set number of SNPs q = 50 # Set number of quadrature nodes d = 100 # Variance of subject-specific random effect tauSq = 1 # Pairwise correlation rho = 0.1 # Minor Allele Frequencey Cutoff Causal.MAF.Cutoff = .05 # Total number of causal variants num = 5 # Define the effect sizes effectSizes <- c(.03, .15) # the baseline cumulative hazard function bhFunInv <- function(x) {x} set.seed(1) # Fixed effects xMat <- cbind(rnorm(n, mean = 0, sd = 2), rbinom(n=n, size=1, prob=0.5)) # Genetic effects gMat <- sim_gmat(n, q, rho) # Get indices to specific select causal variants idx <- Get_CausalSNPs_bynum(gMat, num, Causal.MAF.Cutoff) # Subset the gMat gMatCausal <- gMat[,idx] # True model has nothing fixedMat <- matrix(data=0, nrow=n, ncol=k) # Generate the multiple outcomes exampleDat <- simico_gen_dat(bhFunInv = bhFunInv, obsTimes = 1:3, windowHalf = 0.1, n = n, p = p, k = k, tauSq = tauSq, gMatCausal = gMatCausal, xMat = xMat, effectSizes = effectSizes) # Set the initial estimate values init_beta <-c (rep(c(0, 0, 0, 1, 0), k), 1) # Run the newton-raphson nullFit <- simico_fit_null(init_beta = init_beta, epsilon = 10^-5, xDats = exampleDat$fullDat$xDats, lt_all = exampleDat$leftTimesMat, rt_all = exampleDat$rightTimesMat, k = k, d = d) # Get the test statistics p-values out <- simico_out(nullFit = nullFit$beta_fit, xDats = exampleDat$fullDat$xDats, lt_all = exampleDat$leftTimesMat, rt_all = exampleDat$rightTimesMat, Itt = nullFit$jmat, a1 = 1, a2 = 25, G = gMat, k = k, d = d) # results # Score statistic (out$multQ) # P-values (out$multP)