## ----label = setup, include = FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "img/", fig.align = "center", fig.dim = c(8, 6), out.width = "75%" ) library("RprobitB") options("RprobitB_progress" = FALSE) ## ----RprobitB-parameter-example----------------------------------------------- RprobitB:::RprobitB_parameter( P_f = 1, P_r = 2, J = 3, N = 10, C = 2, # the number of latent classes alpha = c(1), # the fixed coefficient vector of length 'P_f' s = c(0.6, 0.4), # the vector of class weights of length 'C' b = matrix(c(-1, 1, 1, 2), nrow = 2, ncol = 2), # the matrix of class means as columns of dimension 'P_r' x 'C' Omega = matrix(c(diag(2), 0.1 * diag(2)), nrow = 4, ncol = 2), # the matrix of class covariance matrices as columns of dimension 'P_r^2' x 'C' Sigma = diag(2), # the differenced error term covariance matrix of dimension '(J-1)' x '(J-1)' # the undifferenced error term covariance matrix is labeled 'Sigma_full' z = rep(1:2, 5) # the vector of the allocation variables of length 'N' )