## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(RScelestial) # We load igraph for drawing trees. If you do not want to draw, # there is no need to import igraph. library(igraph) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("RScelestial") ## ----------------------------------------------------------------------------- # Following command generates ten samples with 20 loci. # Rate of mutations on each edge of the evolutionary tree is 1.5. D = synthesis(10, 20, 5, seed = 7) D ## ----run-scelestial-0--------------------------------------------------------- seq = as.ten.state.matrix(D$seqeunce) SP = scelestial(seq, return.graph = TRUE) SP ## ----fig.width=5, fig.height=5------------------------------------------------ tree.plot(SP, vertex.size = 30) ## ----fig.width=5, fig.height=5------------------------------------------------ SP = scelestial(seq, root.assign.method = "fix", root = "C8", return.graph = TRUE) tree.plot(SP, vertex.size = 30) ## ----fig.width=5, fig.height=5------------------------------------------------ SP = scelestial(seq, root.assign.method = "balance", return.graph = TRUE) tree.plot(SP, vertex.size = 30) ## ----------------------------------------------------------------------------- D.distance.matrix <- distance.matrix.true.tree(D) D.distance.matrix SP.distance.matrix <- distance.matrix.scelestial(SP) SP.distance.matrix ## Difference between normalized distance matrices vertices <- rownames(SP.distance.matrix) sum(abs(D.distance.matrix[vertices,vertices] - SP.distance.matrix)) ## ----load-libraries----------------------------------------------------------- library(stringr) if (!require("seqinr")) install.packages("seqinr") library(seqinr) ## ----load-data---------------------------------------------------------------- data(phylip, package = "seqinr") ## ----data-cleaning------------------------------------------------------------ # Removing non-informative columns and duplicate rows. mcb <- toupper(t(sapply(seq(phylip$seq), function(i) unlist(strsplit(phylip$seq[[i]], ''))))) ccb <- as.character(phylip$seq) occb <- order(ccb) cbColMask <- sapply(seq(ncol(mcb)), function(j) length(levels(as.factor(mcb[,j]))) == 1) cbRowMask <- rep(TRUE, length(ccb)) for (i in seq(length(ccb))) { if (i == 1 || ccb[occb[i]] != ccb[occb[i-1]]) { cbRowMask[occb[i]] <- FALSE } } mcbRows <- apply(mcb[!cbRowMask, !cbColMask], MARGIN = 1, FUN = function(a) paste0(str_replace(a, "-", "X"), collapse = "")) ## ----run-scelestial----------------------------------------------------------- n.seq <- data.frame(nodes = phylip$nam[!cbRowMask], seq = mcbRows) seq2 <- data.frame(t(as.ten.state.matrix.from.node.seq(n.seq)), stringsAsFactors = TRUE) # Running Scelestial SP = scelestial(seq2, return.graph = TRUE) ## ----plot--------------------------------------------------------------------- tree.plot(SP, vertex.size=20, vertex.label.dist=0, asp = 0, vertex.label.cex = 1)