## ----Fig 1, echo=FALSE, fig.cap= "Figure 1. Overview of general data processing pipeline in chromatography that is presented in the RGCxGC package.", out.width= "80%",message=FALSE, warning=FALSE, paged.print=FALSE, fig.align='center'---- knitr::include_graphics("images/dataProcessing.png") ## ----Fig 2, echo=FALSE, fig.align="center", fig.cap="Figure 2. The basic workflow of RGCxGC package. The functions for each step are in parenthesis. The double line between smooth andbaseline correction refers to the interchangeable pathway.", message=FALSE, warning=FALSE, out.width="80%", paged.print=FALSE---- knitr::include_graphics("images/basicWorkflow.jpg") ## ----Cran install, eval=FALSE, include=TRUE----------------------------------- # install.packages("RGCxGC") ## ----github install, eval=FALSE, include=TRUE--------------------------------- # library(devtools) # install_github("DanielQuiroz97/RGCxGC") ## ----library call------------------------------------------------------------- library(RGCxGC) ## ----Chrom import------------------------------------------------------------- chrom_08 <- system.file("extdata", "08GB.cdf", package = "RGCxGC") MTBLS08 <- read_chrom(chrom_08, mod_time = 5) slotNames(MTBLS08) ## ----Chrom plot, message=FALSE, warning=FALSE, paged.print=FALSE, out.width= "60%"---- # nlevels: Number of levels # color.palette: The color palette to employ library(colorRamps) plot(MTBLS08, nlevels = 100, color.palette = matlab.like2) ## ----baseline correction, out.width= "60%"------------------------------------ MTBLS08_bc <- baseline_corr(MTBLS08) plot(MTBLS08_bc, nlevels = 100, color.palette = matlab.like2) ## ----smoothing, out.width= "60%"---------------------------------------------- # Linear penalty with lambda equal to 10 MTBLS08_sm1 <- wsmooth(MTBLS08_bc, penalty = 1, lambda = 1e1) plot(MTBLS08_sm1, nlevels = 100, color.palette = matlab.like, main = expression(paste(lambda, "= 10, penalty = 1")) ) ## ----smoothing 2, out.width= "60%"-------------------------------------------- # Cuadratic penalty with lambda equal to 10 MTBLS08_sm2 <- wsmooth(MTBLS08_bc, penalty = 2, lambda = 1e1) plot(MTBLS08_sm2, nlevels = 100, color.palette = matlab.like, main = expression(paste(lambda, "= 10, penalty = 2")) ) ## ----2DCOW, out.width= "60%"-------------------------------------------------- # Reference chromatogram chrom_09 <- system.file("extdata", "09GB.cdf", package = "RGCxGC") MTBLS09 <- read_chrom(chrom_09, mod_time = 5L) # Baseline correction MTBL09_bc <- baseline_corr(MTBLS09) # Smoothing MTBL09_sm2 <- wsmooth(MTBL09_bc, penalty = 2, lambda = 1e1) # Alignment aligned <- twod_cow(sample_chrom = MTBLS08_sm2, ref_chrom = MTBL09_sm2, segments = c(10, 40), max_warp = c(1, 8)) plot(aligned, nlevels = 100, color.palette = matlab.like, main = "Aligned chromatogram") ## ----Batch import------------------------------------------------------------- # Read Sample chromatogram GB08_fl <- system.file("extdata", "08GB.cdf", package = "RGCxGC") MTBLS08 <- read_chrom(GB08_fl, mod_time = 5, verbose = F) # Read reference chromatogram GB09_fl <- system.file("extdata", "09GB.cdf", package = "RGCxGC") MTBLS09 <- read_chrom(GB09_fl, mod_time = 5, verbose = F) ## ----Batch list--------------------------------------------------------------- batch_samples <- list(Chrom1 = MTBLS08, Chrom2 = MTBLS08, Chrom3 = MTBLS08) ## ----Batch alignment---------------------------------------------------------- batch_alignment <- batch_2DCOW(MTBLS09, batch_samples, c(10, 40), c(1, 10)) names(batch_alignment@Batch_2DCOW) ## ----Join--------------------------------------------------------------------- allChrom <- join_chromatograms(MTBLS09, MTBLS08) ## ----Join complex, eval=FALSE, include=TRUE----------------------------------- # join_complex <- join_chromatograms(batch_samp1, batch_samp2,#Two batch samples # Ref_chrom1 = reference_1,#User named argument # Ref_chrom2 = reference_2,#User named argument # groups = metadata_exp) #Metadata ## ----metadata, message=FALSE, warning=FALSE, include=FALSE, paged.print=FALSE---- metadata <- data.frame(Names = c("08GB", "09GB", "14GB", "29GB", "34GB", "24GB"), stringsAsFactors = F) metadata$Type = factor(c(rep("S. typhy Carriege", 3), rep("Control", 3))) ## ----print metadata, echo=FALSE----------------------------------------------- knitr::kable(metadata) ## ----batch alignment 2-------------------------------------------------------- data(MTBLS579) ## ----MPCA--------------------------------------------------------------------- exp_MPCA <- m_prcomp(MTBLS579, center = T, scale = F) ## ----Scores, out.width= "60%"------------------------------------------------- scores(exp_MPCA) ## ----negative loadings, out.width= "60%"-------------------------------------- # Negative loadings plot_loading(exp_MPCA, type = "n", main = "Negative loadings", color.palette = matlab.like) ## ----positive loadings, out.width= "60%"-------------------------------------- # Positive loadings plot_loading(exp_MPCA, type = "p", main = "Positive loadings", color.palette = matlab.like)