## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#" ) ## ----setup-------------------------------------------------------------------- library(PowerTOST) # attach the library ## ----example1a---------------------------------------------------------------- sampleN.noninf(CV = 0.25) ## ----example1b---------------------------------------------------------------- sampleN.noninf(CV = 0.25, details = FALSE, print = FALSE)[["Sample size"]] ## ----example1c---------------------------------------------------------------- power.noninf(CV = 0.25, n = 35) ## ----example2----------------------------------------------------------------- sampleN.noninf(CV = 0.25, margin = 1.25, theta0 = 1/0.95) ## ----bracket1----------------------------------------------------------------- res <- data.frame(design = "2x2x4", metric = c("Cmin", "Cmax"), margin = c(0.80, 1.25), CV = c(0.35, 0.20), theta0 = c(0.95, 1.05), n = NA, power = NA, stringsAsFactors = FALSE) # this line for R <4.0.0) for (i in 1:2) { res[i, 6:7] <- sampleN.noninf(design = res$design[i], margin = res$margin[i], theta0 = res$theta0[i], CV = res$CV[i], details = FALSE, print = FALSE)[6:7] } print(res, row.names = FALSE) ## ----bracket2----------------------------------------------------------------- power.noninf(design = "2x2x4", margin = 1.25, CV = 0.20, theta0 = 1.05, n = 32) ## ----bracket3----------------------------------------------------------------- power.noninf(design = "2x2x4", margin = 1.25, CV = 0.25, theta0 = 1.10, n = 32) # higher CV, worse theta0 ## ----bracket4----------------------------------------------------------------- res <- data.frame(design = "2x2x4", intended = c("ABEL", "ABE"), metric = c("Cmin", "Cmax"), CV = c(0.35, 0.20), theta0 = c(0.90, 1.05), n = NA, power = NA, stringsAsFactors = FALSE) # this line for R <4.0.0 res[1, 6:7] <- sampleN.scABEL(CV = res$CV[1], theta0 = res$theta0[1], design = res$design[1], print = FALSE, details = FALSE)[8:9] res[2, 6:7] <- sampleN.TOST(CV = res$CV[2], theta0 = res$theta0[2], design = res$design[2], print = FALSE, details = FALSE)[7:8] print(res, row.names = FALSE) ## ----bracket5----------------------------------------------------------------- n <- sampleN.scABEL(CV = 0.35, theta0 = 0.90, design = "2x2x4", print = FALSE, details = FALSE)[["Sample size"]] # CV and theta0 of both metrics worse than assumed res <- data.frame(design = "2x2x4", intended = c("ABEL", "ABE"), metric = c("Cmin", "Cmax"), CV = c(0.50, 0.25), theta0 = c(0.88, 1.12), n = n, power = NA, stringsAsFactors = FALSE) # this line for R <4.0.0 res[1, 7] <- power.scABEL(CV = res$CV[1], theta0 = res$theta0[1], design = res$design[1], n = n) res[2, 7] <- power.TOST(CV = res$CV[2], theta0 = res$theta0[2], design = res$design[2], n = n) print(res, row.names = FALSE)