---
title: "Library of models"
output:
rmarkdown::html_vignette:
toc: true
vignette: >
%\VignetteIndexEntry{Library of models}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
# Pharmacokinetic models
## Compartmental models and parameters
Six parameters are common to one, two or three compartment models:
+ $V$ or $V_1$, the volume of distribution in the central compartment
+ $k$, the elimination rate constant
+ $CL$, the clearance of elimination
+ $V_m$, the maximum elimination rate for Michaelis-Menten elimination
+ $K_m$, the Michaelis-Menten constant
+ $k_a$, the absorption rate constant for oral administration
## One-compartment models
There are two parameterisations implemented in PFIM for one-compartment models, $\left(V\text{ and }k\right)$ or $\left(V\text{ and }CL\right)$. The equations are given for the first parameterisation $\left(V, k\right)$. For extra-vascular administration, $V$ and $CL$ are apparent volume and clearance. The equations for the second parameterisation $\left(V, CL\right)$ are derived using $k={\frac{CL}{V}}$.
## Models with linear elimination
### One-compartment models
#### Intravenous bolus
+ single dose
$$\begin {equation}
\begin{aligned}
C\left(t\right)=\frac{D}{V}e^{-k\left(t-t_{D}\right)}
\end{aligned}
\end {equation}$$
+ multiple doses
$$\begin {equation}
\begin{aligned}
&
C\left(t\right)=\sum^{n}_{i=1}\frac{D_{i}}{V}e^{-k\left(t-t_{D_{i}}\right)}\\
&
\end{aligned}
\end {equation}$$
+ steady state
$$\begin {equation}
C(t)=\frac{D}{V}\frac{e^{-k(t-t_D)}}{1-e^{-k\tau}}\\
\end {equation}$$
#### Infusion
+ single dose
$$\begin{equation}
C\left(t\right)=
\begin{cases}
{\frac{D}{Tinf}\frac{1}{kV}\left(1-e^{-k\left(t-t_{D}\right)}\right)} & \text{if $t-t_{D}\leq Tinf$,}\\[0.5cm]
{\frac{D}{Tinf}\frac{1}{kV}\left(1-e^{-kTinf}\right)e^{-k\left(t-t_{D}-Tinf\right)}} & \text{if not.}\\
\end{cases}\\
\end{equation}$$
+ multiple doses
$$\begin{equation}
C\left(t\right)=
\begin{cases}
\begin{aligned}
\sum^{n-1}_{i=1}\frac{D_{i}}{Tinf_{i}}
\frac{1}{kV}
&\left(1-e^{-kTinf_{i}}\right)
e^{-k\left(t-t_{D_{i}}-Tinf_i\right)}\\
&+\frac{D_{n}}{Tinf_{n}}
\frac{1}{kV}
\left(1-e^{-k\left(t-t_{D_{n}}\right)}\right)
\end{aligned}
& \text{if $t-t_{D_{n}} \leq Tinf_{n}$,}\\[1cm]
{\displaystyle\sum^{n}_{i=1}\frac{D_{i}}{Tinf_{i}}
\frac{1}{kV}}
\left(1-e^{-kTinf_{i}}\right)
e^{-k\left(t-t_{D_{i}}-Tinf_i\right)} & \text{if not.}\\
\end{cases}
\end{equation}
$$
+ steady state
$$\begin{equation}
\begin{aligned}
&
C\left(t\right)=
\begin{cases}
{\frac{D}{Tinf}
\frac{1}{kV}}
\left[
\left(1-e^{-k(t-t_D)}\right)
+e^{-k\tau}
{\frac{\left(1-e^{-kTinf}\right)e^{-k\left(t-t_D-Tinf\right)}}{1-e^{-k\tau}}}
\right] &\text{if $(t-t_D)\leq Tinf$,}\\[0.6cm]
{\frac{D}{Tinf}
\frac{1}{kV}
\frac{\left(1-e^{-kTinf}\right)e^{-k\left(t-t_D-Tinf\right)}}{1-e^{-k\tau}}} &\text{if not.}\\
\end{cases}\\
&
\end{aligned}
\end{equation}$$
#### First order absorption
+ single dose
$$\begin {equation}
C\left(t\right)=\frac{D}{V}
\frac{k_{a}}{k_{a}-k}
\left(e^{-k\left(t-t_{D}\right)}-e^{-k_{a}\left(t-t_{D}\right)}\right)
\end {equation}$$
+ multiple doses
$$\begin {equation}
C\left(t\right)=\sum^{n}_{i=1}\frac{D_{i}}{V}
\frac{k_{a}}{k_{a}-k}
\left(e^{-k\left(t-t_{D_{i}}\right)}-e^{-k_{a}\left(t-t_{D_{i}}\right)}\right)
\end {equation} $$
+ steady state
$$\begin {equation}
C\left(t\right)=\frac{D}{V}
\frac{k_{a}}{k_{a}-k}
\left(\frac{e^{-k(t-t_D)}}{1-e^{-k\tau}}-\frac{e^{-k_{a}(t-t_D)}}{1-e^{-k_a\tau}}\right)
\end {equation}$$
### Two-compartment models
For two-compartment model equations, $C(t)=C_1(t)$ represent the drug concentration in the first compartment and $C_2(t)$ represents the drug concentration in the second compartment.
As well as the previously described PK parameters, the following PK parameters are used for the two-compartment models:
+ $V_2$, the volume of distribution of second compartment
+ $k_{12}$, the distribution rate constant from compartment 1 to compartment 2
+ $k_{21}$, the distribution rate constant from compartment 2 to compartment 1
+ $Q$, the inter-compartmental clearance
+ $\alpha$, the first rate constant
+ $\beta$, the second rate constant
+ $A$, the first macro-constant
+ $B$, the second macro-constant
There are two parameterisations implemented in PFIM for two-compartment models: $\left(V\text{, }k\text{, }k_{12}\text{ and }k_{21}\right)$, or $\left(CL\text{, }V_1\text{, }Q\text{ and }V_2\right)$. For extra-vascular administration, $V_1$ ($V$), $V_2$, $CL$, and $Q$ are apparent volumes and clearances.
The second parameterisation terms are derived using:
+ $V_1=V$
+ $CL=k \times V_1$
+ $Q=k_{12} \times V_1$
+ $V_2= {\frac{k_{12}}{k_{21}}}\times V_1$
For readability, the equations for two-compartment models with linear elimination are given using the variables $\alpha\text{, }\beta\text{, }A\text{ and }B$ defined by the following expressions:
$$\alpha = {\frac{k_{21}k}{\beta}} = {\frac{{\frac{Q}{V_2}}{\frac{CL}{V_1}}}{\beta}}$$
$$\beta=
\begin{cases}
{\frac{1}{2}\left[k_{12}+k_{21}+k-\sqrt{\left(k_{12}+k_{21}+k\right)^2-4k_{21}k}\right]}\\[0.4cm]
{
\frac{1}{2}
\left[
\frac{Q}{V_1}+\frac{Q}{V_2}+\frac{CL}{V_1}-\sqrt{\left(\frac{Q}{V_1}+\frac{Q}{V_2}+\frac{CL}{V_1}\right)^2-4\frac{Q}{V_2}\frac{CL}{V_1}}
\right]
}
\end{cases}$$
The link between A and B, and the PK parameters of the first and second parameterisations depends on the input and are given in each subsection.
#### Intravenous bolus
For intravenous bolus, the link between $A$ and $B$, and the parameters ($V$, $k$, $k_{12}$ and $k_{21}$), or ($CL$, $V_1$, $Q$ and $V_2$) is defined as follows:
$$A={\frac{1}{V}\frac{\alpha-k_{21}}{\alpha-\beta}}
={\frac{1}{V_1}\frac{\alpha-{\frac{Q}{V_2}}}{\alpha-\beta}}$$
$$B={\frac{1}{V}\frac{\beta-k_{21}}{\beta-\alpha}}
={\frac{1}{V_1}\frac{\beta-{\frac{Q}{V_2}}}{\beta-\alpha}}$$
+ single dose
$$\begin {equation}
C\left(t\right)=D\left(Ae^{-\alpha \left(t-t_D\right)}+Be^{-\beta \left(t-t_D\right)}\right)
\end {equation}$$
+ multiples doses
$$\begin {equation}
C\left(t\right)=\sum^{n}_{i=1}D_{i}\left(Ae^{-\alpha \left(t-t_{D_{i}}\right)}+Be^{-\beta \left(t-t_{D_{i}}\right)}\right)
\end {equation} $$
+ steady state
$$\begin {equation}
C\left(t\right)=D\left(\frac{Ae^{-\alpha t}}{1-e^{-\alpha \tau}}+\frac{Be^{-\beta t}}{1-e^{-\beta \tau}}\right)
\end{equation}$$
#### Infusion
For infusion, the link between $A$ and $B$, and the parameters ($V$, $k$, $k_{12}$ and $k_{21}$), or ($CL$, $V_1$, $Q$ and $V_2$) is defined as follows:
$$A={\frac{1}{V}\frac{\alpha-k_{21}}{\alpha-\beta}}
={\frac{1}{V_1}\frac{\alpha-{\frac{Q}{V_2}}}{\alpha-\beta}}$$
$$B={\frac{1}{V}\frac{\beta-k_{21}}{\beta-\alpha}}
={\frac{1}{V_1}\frac{\beta-{\frac{Q}{V_2}}}{\beta-\alpha}}$$
+ single dose
$$ \begin {equation}
C\left(t\right)=
\begin{cases}
{\frac{D}{Tinf}}\left[
\begin{aligned}
\frac{A}{\alpha}\left(1-e^{-\alpha \left(t-t_D\right)}\right)\\[0.1cm]
+ \frac{B}{\beta}\left(1-e^{-\beta \left(t-t_D\right)}\right)
\end{aligned}
\right] & \text{if $t-t_D\leq Tinf$,}\\[1cm]
{\frac{D}{Tinf}}\left[
\begin{aligned}
\frac{A}{\alpha}\left(1-e^{-\alpha Tinf}\right) e^{-\alpha \left(t-t_D-Tinf\right)}\\[0.1cm]
+ \frac{B}{\beta}\left(1-e^{-\beta Tinf}\right) e^{-\beta \left(t-t_D-Tinf\right)}
\end{aligned}
\right] & \text{if not.}\\
\end{cases}
\end {equation} $$
+ multiple doses
$$\begin {equation}
C\left(t\right)=
\begin{cases}
\begin{aligned}
\sum^{n-1}_{i=1}&\frac{D_i}{Tinf_i}
\left[
\begin{aligned}
\frac{A}{\alpha}\left(1-e^{-\alpha Tinf_i}\right) e^{-\alpha \left(t-t_{D_{i}}-Tinf_i\right)}\\[0.1cm]
+ \frac{B}{\beta}\left(1-e^{-\beta Tinf_i}\right) e^{-\beta \left(t-t_{D_{i}}-Tinf_i\right)}
\end{aligned}
\right]\\[0.2cm]
&+\frac{D}{Tinf_n}
\left[
\begin{aligned}
\frac{A}{\alpha}\left(1-e^{-\alpha \left(t-t_{D_{n}}\right)}\right)\\[0.1cm]
+ \frac{B}{\beta}\left(1-e^{-\beta \left(t-t_{D_{n}}\right)}\right)
\end{aligned}
\right]
\end{aligned} & \text{if $t-t_{D_{n}}\leq Tinf$,}\\
{\displaystyle \sum^{n}_{i=1}\frac{D_i}{Tinf_i}}
\left[
\begin{aligned}
\frac{A}{\alpha}\left(1-e^{-\alpha Tinf_i}\right) e^{-\alpha \left(t-t_{D_{i}}-Tinf_i\right)}\\[0.1cm]
+ \frac{B}{\beta}\left(1-e^{-\beta Tinf_i}\right) e^{-\beta \left(t-t_{D_{i}}-Tinf_i\right)}
\end{aligned}
\right] & \text{if not.}
\end{cases}
\end {equation} $$
+ steady state
$$\begin {equation}
\hspace{-0.5cm}
C\left(t\right)=\begin{cases}
{\frac{D}{Tinf}}
\left[
\begin{aligned}
&\frac{A}{\alpha}
\left(
\begin{aligned}
&\left(1-e^{-\alpha (t-t_D)}\right)\\
&+ e^{-\alpha \tau}
\frac{ \left(1-e^{-\alpha Tinf}\right) e^{-\alpha \left(t-t_D - Tinf\right)}}
{1-e^{-\alpha \tau}}
\end{aligned}
\right)\\[0.1cm]
&+ \frac{B}{\beta}
\left(
\begin{aligned}
&\left(1-e^{-\beta (t-t_D)}\right)\\
&+ e^{-\beta \tau}
\frac{ \left(1-e^{-\beta Tinf}\right) e^{-\beta \left(t-t_D - Tinf\right)}}
{1-e^{-\beta \tau}}
\end{aligned}
\right)
\end{aligned}
\right] &\!\!\!\!\!\text{if $t-t_D\leq Tinf$,}\vspace*{0.5cm}\\
{\frac{D}{Tinf}}
\left[
\begin{aligned}
&\frac{A}{\alpha}
\left(
\frac{ \left(1-e^{-\alpha Tinf}\right) e^{-\alpha \left(t-t_D - Tinf\right)}}
{1-e^{-\alpha \tau}}
\right)\\[0.1cm]
&+ \frac{B}{\beta}
\left(
\frac{ \left(1-e^{-\beta Tinf}\right) e^{-\beta \left(t-t_D - Tinf\right)}}
{1-e^{-\beta \tau}}
\right)
\end{aligned}
\right] &\!\!\!\!\!\text{if not.}
\end{cases}
\label{infusion2lss}
\end {equation}$$
#### First-order absorption
For first order absorption, the link between $A$ and $B$, and the parameters ($k_a$, $V$, $k$, $k_{12}$ and $k_{21}$), or $\left(k_a\text{, } CL\text{, }V_1\text{, }Q\text{ and }V_2\right)$ is defined as follows:
$$A={\frac{k_a}{V}\frac{k_{21}-\alpha}{\left(k_a-\alpha\right)\left(\beta-\alpha\right)}}
={\frac{k_a}{V_1}\frac{{\frac{Q}{V_2}}-\alpha}{\left(k_a-\alpha\right)\left(\beta-\alpha\right)}}$$
$$B={\frac{k_a}{V}\frac{k_{21}-\beta}{\left(k_a-\beta\right)\left(\alpha-\beta\right)}}
={\frac{k_a}{V_1}\frac{{\frac{Q}{V_2}}-\beta}{\left(k_a-\beta\right)\left(\alpha-\beta\right)}}$$
+ single dose
$$ \begin {equation}
C\left(t\right)=D
\left(
Ae^{-\alpha \left(t-t_D\right)}+Be^{-\beta \left(t-t_D\right)}-(A+B)e^{-k_a \left(t-t_D\right)}
\right)
\end {equation}$$
+ multiple doses
$$\begin {equation}
C\left(t\right)=\sum^{n}_{i=1}D_{i}
\left(
Ae^{-\alpha \left(t-t_{D_{i}}\right)}+Be^{-\beta \left(t-t_{D_{i}}\right)}-(A+B)e^{-k_a \left(t-t_{D_{i}}\right)}
\right)
\end {equation}$$
+ steady state
$$\begin {equation}
C\left(t\right)=D
\left(
\frac{Ae^{-\alpha (t-t_D)}}{1-e^{-\alpha \tau}}
+\frac{Be^{-\beta (t-t_D)}}{1-e^{-\beta \tau}}
-\frac{(A+B)e^{-k_a (t-t_D)}}{1-e^{-k_a \tau}}
\right)
\end {equation}$$
## Models with Michaelis-Menten elimination
The list of PK models with Michaelis-Menten elimination implemented in PFIM are summarised in Appendix I.2. Presently, there is no implementation for multiple dosing with IV bolus administration in the PFIM software. For infusion and oral administration, the implementation in PFIM does not allow designs with different groups of doses as the dose is included in the model.
### One-compartment models
#### Intravenous bolus
+ single dose
$$\begin{equation}
\begin{aligned}
\text{Initial }&\text{conditions: }\begin{cases}
C\left(t\right)&= 0 \text{ for $t