## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(PCObw) ## ----------------------------------------------------------------------------- # simple example with univariate data data("gauss_1D_sample") bw.L2PCO(gauss_1D_sample) ## ----------------------------------------------------------------------------- # simple example with epanechnikov kernel data("gauss_1D_sample") bw.L2PCO(gauss_1D_sample, K_name = "epanechnikov") # simple example with biweight kernel bw.L2PCO(gauss_1D_sample, K_name = "biweight") ## ----------------------------------------------------------------------------- # example when the tolerance is not reached data("gauss_1D_sample") bw.L2PCO(gauss_1D_sample, nh = 3) bw.L2PCO(gauss_1D_sample, tol = 10^(-6)) ## ----------------------------------------------------------------------------- # binning example data("gauss_1D_sample") bw.L2PCO(gauss_1D_sample, binning = TRUE) ## ----------------------------------------------------------------------------- # change the number of bins "nb" data("gauss_1D_sample") bw.L2PCO(gauss_1D_sample, binning = TRUE, nb = 130) # or use "adapt_nb_bin = TRUE" bw.L2PCO(gauss_1D_sample, binning = TRUE, adapt_nb_bin = TRUE) # time comparison between exact and binned criterion with an huge sample huge_sample <- rnorm(n = 10000, mean = 0, sd = 1) ptm0 <- proc.time() bw.L2PCO(huge_sample) proc.time() - ptm0 ptm0 <- proc.time() bw.L2PCO(huge_sample, binning = TRUE, adapt_nb_bin = TRUE) proc.time() - ptm0 ## ----------------------------------------------------------------------------- # example with 2D data data("gauss_mD_sample") # to return a full matrix bw.L2PCO(gauss_mD_sample) # to return a diagonal matrix bw.L2PCO.diag(gauss_mD_sample) ## ----------------------------------------------------------------------------- data("gauss_mD_sample") # increase the tolerance for faster results bw.L2PCO.diag(gauss_mD_sample, tol = 10^(-3)) # increase "nh" for more accurate results bw.L2PCO.diag(gauss_mD_sample, nh = 80) # increase the tolerance for faster results bw.L2PCO(gauss_mD_sample, tol = 10^(-3)) # increase "nh" for more accurate results bw.L2PCO(gauss_mD_sample, nh = 80) ## ----------------------------------------------------------------------------- data("gauss_mD_sample") # with a too small number of bins, the results are degenerated bw.L2PCO.diag(gauss_mD_sample, binning = TRUE, nh = 80, nb_bin_vect = c(5, 10)) bw.L2PCO.diag(gauss_mD_sample, binning = TRUE, nh = 80, nb_bin_vect = c(40, 80)) # with a too small number of bins, the results are degenerated bw.L2PCO(gauss_mD_sample, binning = TRUE, nh = 80, nb_bin_vect = c(5, 10)) bw.L2PCO(gauss_mD_sample, binning = TRUE, nh = 80, nb_bin_vect = c(40, 45))