Package 'PAGFL'

February 17, 2024

Title Joint Estimation and Identification of Latent Groups in Panel Data Models

Version 1.0.1

Maintainer Paul Haimerl <paul.haimerl@maastrichtuniversity.nl>

Description In panel data analysis, unobservable group structures are a common challenge. Disregarding group-level heterogeneity by assuming an entirely homogeneous panel can introduce bias. Conversely, estimating individual coefficients for each cross-sectional unit is inefficient and may lead to high uncertainty.
This package addresses this issue by implementing the pairwise adaptive group fused Lasso (PAGFL) by Mehrabani (2023) <doi:10.1016/j.jeconom.2022.12.002>.
PAGFL is an efficient methodology to identify latent group structures and estimate group-specific coefficients simultaneously.

License AGPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp, pbapply

BugReports https://github.com/Paul-Haimerl/PAGFL/issues

URL https://github.com/Paul-Haimerl/PAGFL

NeedsCompilation yes

Author Paul Haimerl [aut, cre] (<https://orcid.org/0000-0003-3198-8317>), Ali Mehrabani [ctb] (<https://orcid.org/0000-0002-1848-5582>)

Repository CRAN

Date/Publication 2024-02-17 11:10:05 UTC

R topics documented:

PAGFL	 2
sim_DGP	 5

8

Index

PAGFL

Description

The pairwise adaptive group fused lasso (PAGFL) by Mehrabani (2023) jointly estimates the latent group structure and group-specific slope parameters in a panel data model. It can handle static and dynamic panels, either with or without endogenous regressors.

Usage

```
PAGFL(
 у,
 Χ,
  n_periods,
  lambda,
 method = "PLS",
  Z = NULL,
 min_group_frac = 0.05,
  bias_correc = FALSE,
  kappa = 2,
 max_iter = 2000,
  tol_convergence = 0.001,
  tol_group = sqrt(p/(sqrt(N * n_periods) * log(log(N * n_periods)))),
  rho = 0.07 * log(N * n_periods)/sqrt(N * n_periods),
  varrho = max(sqrt(5 * N * n_periods * p)/log(N * n_periods * p) - 7, 1),
  verbose = TRUE
)
```

Arguments

У	a $NT \times 1$ vector or data.frame of the dependent variable, with $\boldsymbol{y} = (y_1, \dots, y_N)'$, $y_i = (y_{i1}, \dots, y_{iT})'$ and the scalar y_{it} .
Х	a $NT \times p$ matrix or data.frame of explanatory variables, with $\mathbf{X} = (x_1, \dots, x_N)'$, $x_i = (x_{i1}, \dots, x_{iT})'$ and the $p \times 1$ vector x_{it} .
n_periods	the number of observed time periods T .
lambda	the tuning parameter governing the strength of the penalty term. Either a single λ or a vector of candidate values can be passed. If a vector is supplied, a BIC-type information criterion selects the best fitting parameter value.
method	the estimation method. Options are
	 'PLS' for using the penalized least squares (<i>PLS</i>) algorithm. We recommend <i>PLS</i> in case of (weakly) exogenous regressors (Mehrabani, 2023, sec. 2.2). 'PGMM' for using the penalized Generalized Method of Moments (<i>PGMM</i>). <i>PGMM</i> is required when instrumenting endogenous regressors (Mehrabani, 1999).
	2023, sec. 2.3). A matrix Z contains the necessary exogenous instruments.

Default is 'PLS'.

Ζ	a $NT \times q$ matrix of exogenous instruments, where $q \ge p$, $\mathbf{Z} = (z_1, \ldots, z_N)'$, $z_i = (z_{i1}, \ldots, z_{iT})'$ and z_{it} is a $q \times 1$ vector. Z is only required when method = 'PGMM' is selected. When using 'PLS', either pass NULL or any matrix \mathbf{Z} is disregarded. Default is NULL.
<pre>min_group_frac</pre>	the minimum group size as a fraction of the total number of individuals N . In case a group falls short of this threshold, a hierarchical classifier allocates its members to the remaining groups. Default is 0.05.
bias_correc	logical. If TRUE, a Split-panel Jackknife bias correction following Dhaene and Jochmans (2015) is applied to the slope parameters. We recommend using this correction when facing a dynamic panel. Default is FALSE.
kappa	the weight placed on the adaptive penalty weights. Default is 2.
max_iter	the maximum number of iterations for the <i>ADMM</i> estimation algorithm. Default is 2000.
tol_convergenc	e
	the tolerance limit for the stopping criterion of the iterative <i>ADMM</i> estimation algorithm. Default is 0.001.
tol_group	the tolerance limit for within-group differences. Two individuals are placed in the same group if the Frobenius norm of their coefficient parameter difference is below this parameter. If left unspecified, the heuristic $\sqrt{\frac{p}{\sqrt{NT} \log(\log(NT))}}$ is
	used. We recommend the default.
rho	the tuning parameter balancing the fitness and penalty terms in the information criterion that determines the penalty parameter λ . If left unspecified, the heuristic $\rho = 0.07 \frac{\sqrt{NT} \log(NT)}{NT}$ of Mehrabani (2023, sec. 6) is used. We recommend the default.
varrho	the non-negative Lagrangian <i>ADMM</i> penalty parameter. For <i>PLS</i> , the ρ value is trivial. However, for <i>PGMM</i> , small values lead to slow convergence of the algorithm. If left unspecified, the default heuristic $\rho = \max(\frac{\sqrt{5NT\rho}}{\log(NTp)} - 7, 1)$ is used.
verbose	logical. If TRUE, a progression bar is printed when iterating over candidate λ values and helpful warning messages are shown. Default is TRUE.

Details

The PLS method minimizes the following criterion:

$$\frac{1}{T} \sum_{i=1}^{N} \sum_{t=1}^{T} (\tilde{y}_{it} - \beta'_i \tilde{x}_{it})^2 + \frac{\lambda}{N} \sum_{1 \le i} \sum_{i < j \le N} \dot{w}_{ij} \|\beta_i - \beta_j\|,$$

where \tilde{y}_{it} is the de-meaned dependent variable, \tilde{x}_{it} represents a vector of de-meaned weakly exogenous explanatory variables, λ is the penalty tuning parameter and \dot{w}_{ij} reflects adaptive penalty weights (see Mehrabani, 2023, eq. 2.6). $\|\cdot\|$ denotes the Frobenius norm. The adaptive weights \dot{w}_{ij} are obtained by a preliminary least squares estimation. The solution $\hat{\beta}$ is computed via an iterative alternating direction method of multipliers (*ADMM*) algorithm (see Mehrabani, 2023, sec. 5.1).

PGMM employs a set of instruments Z to control for endogenous regressors. Using *PGMM*, $\beta = (\beta'_1, \dots, \beta'_N)'$ is estimated by minimizing:

$$\sum_{i=1}^{N} \left[\frac{1}{N} \sum_{t=1}^{T} z_{it} (\Delta y_{it} - \beta'_i \Delta x_{it}) \right]' W_i \left[\frac{1}{T} \sum_{t=1}^{T} z_{it} (\Delta y_{it} - \beta'_i \Delta x_{it}) \right] + \frac{\lambda}{N} \sum_{1 \le i} \sum_{i < j \le N} \ddot{w}_{ij} \|\beta_i - \beta_j\|.$$

 \ddot{w}_{ij} are obtained by an initial *GMM* estimation. Δ gives the first differences operator $\Delta y_{it} = y_{it} - y_{it-1}$. W_i represents a data-driven $q \times q$ weight matrix. I refer to Mehrabani (2023, eq. 2.10) for more details. β is again estimated employing an efficient *ADMM* algorithm (Mehrabani, 2023, sec. 5.2).

Two individuals are assigned to the same group if $\|\hat{\beta}_i - \hat{\beta}_j\| \le \epsilon_{tol}$, where ϵ_{tol} is given by tol_group. We suggest identifying a suitable λ parameter by passing a logarithmically spaced grid of candidate values with a lower limit of 0 and an upper limit that leads to a fully homogenous panel. A BIC-type information criterion then selects the best fitting λ value.

Value

A list holding

IC	the BIC-type information criterion.
lambda	the penalization parameter. If multiple λ values were passed, the parameter yielding the lowest IC.
alpha_hat	a $K \times p$ matrix of the post-Lasso group-specific parameter estimates.
K_hat	the estimated total number of groups.
groups_hat	a vector of estimated group memberships.
iter	the number of executed algorithm iterations.
convergence	logical. If TRUE, convergence was achieved. If FALSE, max_iter was reached.

Author(s)

Paul Haimerl

References

Dhaene, G., & Jochmans, K. (2015). Split-panel jackknife estimation of fixed-effect models. *The Review of Economic Studies*, 82(3), 991-1030. doi:10.1093/restud/rdv007.

Mehrabani, A. (2023). Estimation and identification of latent group structures in panel data. *Journal of Econometrics*, 235(2), 1464-1482. doi:10.1016/j.jeconom.2022.12.002.

Examples

```
# Simulate a panel with a group structure
sim <- sim_DGP(N = 50, n_periods = 80, p = 2, n_groups = 3)
y <- sim$y
X <- sim$X</pre>
```

Run the PAGFL procedure for a set of candidate tuning parameter values

```
lambda_set <- exp(log(10) * seq(log10(1e-4), log10(10), length.out = 10))
estim <- PAGFL(y = y, X = X, n_periods = 80, lambda = lambda_set, method = 'PLS')
print(estim)</pre>
```

sim_DGP

Simulate a Panel With a Latent Group Structure

Description

Construct a static or dynamic, exogenous or endogenous panel data set subject to a latent group structure with optional AR(1) or GARCH(1,1) innovations.

Usage

```
sim_DGP(
   N = 50,
   n_periods = 40,
   p = 2,
   n_groups = 3,
   group_proportions = NULL,
   error_spec = NULL,
   dyn_panel = FALSE,
   q = NULL,
   alpha_0 = NULL
)
```

Arguments

Ν	the number of cross-sectional units. Default is 50.
n_periods	the number of simulated time periods T . Default is 40.
р	the number of explanatory variables. Default is 2.
n_groups	the number of latent groups K . Default is 3.
group_proportions	
	a numeric vector of length n_groups indicating the fraction of N each group will contain. If NULL, all groups are of size $\frac{N}{K}$. Default is NULL.
error_spec	the error specification used. Options are
	NULL for <i>iid</i> errors.
	'AR' for an $AR(1)$ error process with an autoregressive coefficient of 0.5.
	'GARCH' for a $GARCH(1,1)$ error process with a 0.05 constant, a 0.05 ARCH and a 0.9 GARCH coefficient.
	Default is NULL.
dyn_panel	Logical. If TRUE, the panel includes one stationary autoregressive lag of the dependent variable (see sec. Details for information on the AR coefficient). Default is FALSE.

q	the number of exogenous instruments when a panel with endogenous regressors is to be simulated. If panel data set with exogenous regressors is supposed to be generated, pass NULL. Default is NULL.
alpha_0	an optional pre-specified $K \times p$ parameter matrix. If NULL, the coefficients are drawn randomly (see sec. Details). If dyn_panel = TRUE, the first column represents the stationary AR coefficient. Default is NULL.

Details

The scalar dependent variable y_{it} is driven by the following panel data model

$$y_{it} = \eta_i + \beta'_i x_{it} + u_{it}, \quad i = \{1, \dots, N\}, \quad t = \{1, \dots, T\}.$$

 η_i represents individual fixed effects and $x_{it} = (x_{it,1}, \ldots, x_{it,p})$ a $p \times 1$ vector of regressors. The individual slope coefficient vectors β_i are subject to a latent group structure $\beta_i = \sum_{k=1}^{K} \alpha_k \mathbf{1}\{i \in G_k\}$. As a consequence, the group-level coefficients $\boldsymbol{\alpha} = (\alpha'_1, \ldots, \alpha'_K)'$ follow the partition \boldsymbol{G} of N cross-sectional units $\boldsymbol{G} = (G_1, \ldots, G_K)$ such that $\bigcup_{k=1}^{K} = \{1, \ldots, N\}$ and $G_k \cap G_l = \emptyset$, $\alpha_k \neq \alpha_l$ for any two groups $k \neq l$ (Mehrabani, 2023, sec. 2.1).

If a panel data set with exogenous regressors is generated (set q = NULL), the p predictors are simulated as:

$$x_{it,j} = 0.2\eta_i + e_{it,j}, \quad \eta_i, e_{it,j} \sim i.i.d.N(0,1), \quad j = \{1, \dots, p\},\$$

where $e_{it,j}$ denotes a series of innovations. η_i and e_i are independent of each other.

In case alpha_0 = NULL, the group-level slope parameters α_k are drawn from $\sim U[-2, 2]$.

If a dynamic panel is specified (dyn_panel = TRUE), the AR coefficients β_i^{AR} are drawn from a uniform distribution with support (-1, 1) and $x_{it,j} = e_{it,j}$. The individual fixed effects enter the dependent variable via $(1 - \beta_i^{AR})\eta_i$ to account for the autoregressive dependency. I refer to Mehrabani (2023, sec 6) for details.

When specifying an endogenous panel (set q to $q \ge p$), $e_{it,j}$ correlate with the cross-sectional innovations u_{it} by a magnitude of 0.5 to produce endogenous regressors with $E(u|X) \ne 0$. However, the endogenous regressors can be accounted for by exploiting the q instruments in Z, for which E(u|Z) = 0 holds. The instruments and the first stage coefficients are generated in the same fashion as X and α when q = NULL, respectively.

The function nests, among other, the DGPs employed in the simulation study of Mehrabani (2023, sec. 6).

Value

A list holding

alpha	the $K \times p$ matrix of group-specific slope parameters. In case of dyn_panel = TRUE, the first column holds the AR coefficient.
groups	a vector indicating the group memberships.
У	a $NT \times 1$ vector of the dependent variable, with $\boldsymbol{y} = (y_1, \dots, y_N)', y_i = (y_{i1}, \dots, y_{iT})'$ and the scalar y_{it} .
Х	a $NT \times p$ matrix of explanatory variables, with $\mathbf{X} = (x_1, \dots, x_N)', x_i = (x_{i1}, \dots, x_{iT})'$ and the $p \times 1$ vector x_{it} .

sim_DGP

Ζ

a $NT \times q$ matrix of instruments, where $q \ge p$, $\mathbf{Z} = (z_1, \ldots, z_N)'$, $z_i = (z_{i1}, \ldots, z_{iT})'$ and z_{it} is a $q \times 1$ vector. In case a panel with exogenous regressors is generated (q = NULL), \mathbf{Z} equals NULL.

Author(s)

Paul Haimerl

References

Mehrabani, A. (2023). Estimation and identification of latent group structures in panel data. *Journal of Econometrics*, 235(2), 1464-1482. doi:10.1016/j.jeconom.2022.12.002.

Examples

```
# Simulate DGP 1 from Mehrabani (2023, sec. 6)
alpha_0_DGP1 <- matrix(c(0.4, 1, 1.6, 1.6, 1, 0.4), ncol = 2)
DGP1 <- sim_DGP(
    N = 50, n_periods = 20, p = 2, n_groups = 3,
    group_proportions = c(.4, .3, .3), alpha_0 = alpha_0_DGP1
)
# Simulate DGP 6 from Mehrabani (2023, sec. 6)
alpha_0_DGP6 <- cbind(
    c(0.8, 0.6, 0.4, 0.2, -0.2, -0.4, -0.6, -0.8),
    c(-4, -3, -2, -1, 1, 2, 3, 4),
    c(4, 3, 2, 1, -1, -2, -3, -4)
)
```

Index

PAGFL, 2

sim_DGP,5