## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(OssaNMA) ## ----------------------------------------------------------------------------- # Analyze the new trial with the existing network ssnma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, power.level = 0.8, sig.level = 0.05, method = "with", allocation = "uneven") ## ----------------------------------------------------------------------------- # Analyze the new trial with the existing network and # keep the sample size of each group to be the same ssnma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, power.level = 0.8, sig.level = 0.05, method = "with", allocation = "even") ## ----------------------------------------------------------------------------- # Analyze the new trial without the existing network ssnma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, power.level = 0.8, sig.level = 0.05, method = "without", allocation = "uneven") ## ----------------------------------------------------------------------------- # Analyze the new trial without the existing network and # keep the sample size of each group to be the same ssnma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, power.level = 0.8, sig.level = 0.05, method = "without", allocation = "even") ## ----------------------------------------------------------------------------- # Analyze the new trial with the existing network ssanma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, N = 200, sig.level = 0.05, method = "with") ## ----------------------------------------------------------------------------- # Analyze the new trial without the existing network ssanma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, N = 200, sig.level = 0.05, method = "without") ## ----------------------------------------------------------------------------- # Even allocation and analyze the new trial with the existing network ssanma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, N = 200, sig.level = 0.05, method = "with", allocation = "even") ## ----------------------------------------------------------------------------- # Even allocation and analyze the new trial without the existing network ssanma(p1 = 0.2, p2 = 0.3, enma_sigma = 0.3, N = 200, sig.level = 0.05, method = "without", allocation = "even") ## ----------------------------------------------------------------------------- # load the example dataset in package OssaNMA data(BRDdat) head(BRDdat) ## ----------------------------------------------------------------------------- library(netmeta) nma_res <- netmeta(TE,seTE,treat1,treat2,studlab, data=BRDdat, sm="OR",comb.fixed = T,comb.random = F) ## ----------------------------------------------------------------------------- enma_sigma <- nma_res$seTE.fixed['Ceftiofur pin','Tildipirosin'] enma_sigma ## ----------------------------------------------------------------------------- # The risk of NMA is calculate by pooling the arm-level data from the existing network. # The arm-level data is not provided in the package so the value is given directly here. p_nac <- 0.68 # extract the log odds ratio between NAC and two treatments from nma_res lor_nac_enro <- nma_res$TE.fixed['No active control','Ceftiofur pin'] lor_nac_flor <- nma_res$TE.fixed['No active control','Tildipirosin'] # calculate risk of Ceftiofur pin, name it as p1 p1 <- p_nac/(p_nac + exp(lor_nac_enro)*(1-p_nac)) # calculate risk of Tildipirosin, name it as p2 p2 <- p_nac/(p_nac + exp(lor_nac_flor)*(1-p_nac)) ## ----------------------------------------------------------------------------- p1 ## ----------------------------------------------------------------------------- p2 ## ----------------------------------------------------------------------------- # Analyze the new trial with the existing network ssnma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, power.level = 0.8, sig.level = 0.05, method = "with", allocation = "uneven") ## ----------------------------------------------------------------------------- # Analyze the new trial with the existing network and # keep the sample size of each group to be the same ssnma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, power.level = 0.8, sig.level = 0.05, method = "with", allocation = "even") ## ----------------------------------------------------------------------------- # Analyze the new trial without the existing network ssnma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, power.level = 0.8, sig.level = 0.05, method = "without", allocation = "uneven") ## ----------------------------------------------------------------------------- # Analyze the new trial without the existing network and # keep the sample size of each group to be the same ssnma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, power.level = 0.8, sig.level = 0.05, method = "without", allocation = "even") ## ----------------------------------------------------------------------------- # Analyze the new trial with the existing network ssanma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, N = 800, sig.level = 0.05, method = "with") ## ----------------------------------------------------------------------------- # Analyze the new trial without the existing network ssanma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, N = 800, sig.level = 0.05, method = "without") ## ----------------------------------------------------------------------------- # Even allocation and analyze the new trial with the existing network ssanma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, N = 800, sig.level = 0.05, method = "with", allocation = "even") ## ----------------------------------------------------------------------------- # Even allocation and analyze the new trial without the existing network ssanma(p1 = p1, p2 = p2, enma_sigma = enma_sigma, N = 800, sig.level = 0.05, method = "without", allocation = "even")