In this vignette, we will explore the OmopSketch functions
designed to provide an overview of the observation_period
table. Specifically, there are five key functions that facilitate
this:
summariseObservationPeriod()
,
plotObservationPeriod()
and
tableObservationPeriod()
: Use them to get some overall
statistics describing the observation_period
tablesummariseInObservation()
and
plotInObservation()
: Use them to summarise the number of
individuals in observation during specific intervals of time.Let’s see an example of its functionalities. To start with, we will load essential packages and create a mock cdm using the mockOmopSketch() database.
library(dplyr)
library(OmopSketch)
# Connect to mock database
cdm <- mockOmopSketch()
Let’s now use the summariseObservationPeriod()
function
from the OmopSketch package to help us have an overview of one of the
observation_period
table, including some statistics such as
the Number uf subjects
and Duration in days
for each observation period (e.g., 1st, 2nd)
summarisedResult <- summariseObservationPeriod(cdm$observation_period)
summarisedResult
#> # A tibble: 3,102 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 mockOmopSketch observation_pe… all overall overall
#> 2 1 mockOmopSketch observation_pe… all overall overall
#> 3 1 mockOmopSketch observation_pe… all overall overall
#> 4 1 mockOmopSketch observation_pe… all overall overall
#> 5 1 mockOmopSketch observation_pe… all overall overall
#> 6 1 mockOmopSketch observation_pe… all overall overall
#> 7 1 mockOmopSketch observation_pe… all overall overall
#> 8 1 mockOmopSketch observation_pe… all overall overall
#> 9 1 mockOmopSketch observation_pe… all overall overall
#> 10 1 mockOmopSketch observation_pe… all overall overall
#> # ℹ 3,092 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
Notice that the output is in the summarised result format.
We can use the arguments to specify which statistics we want to
perform. For example, use the argument estimates
to
indicate which estimates you are interested regarding the
Duration in days
of the observation period.
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
estimates = c("mean", "sd", "q05", "q95"))
summarisedResult |>
filter(variable_name == "Duration in days") |>
select(group_level, variable_name, estimate_name, estimate_value)
#> # A tibble: 8 × 4
#> group_level variable_name estimate_name estimate_value
#> <chr> <chr> <chr> <chr>
#> 1 all Duration in days mean 4423.55
#> 2 all Duration in days sd 4072.17764782611
#> 3 all Duration in days q05 123
#> 4 all Duration in days q95 11691
#> 5 1st Duration in days mean 4423.55
#> 6 1st Duration in days sd 4072.17764782611
#> 7 1st Duration in days q05 123
#> 8 1st Duration in days q95 11691
Additionally, you can stratify the results by sex and age groups, and specify a date range of interest:
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
estimates = c("mean", "sd", "q05", "q95"),
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)),
dateRange = as.Date(c("1970-01-01", "2010-01-01")))
summarisedResult |>
select(group_level, variable_name, strata_level, estimate_name, estimate_value) |>
glimpse()
#> Rows: 135
#> Columns: 5
#> $ group_level <chr> "all", "all", "all", "all", "all", "all", "all", "all",…
#> $ variable_name <chr> "Number records", "Number subjects", "Records per perso…
#> $ strata_level <chr> "overall", "overall", "overall", "overall", "overall", …
#> $ estimate_name <chr> "count", "count", "mean", "sd", "q05", "q95", "mean", "…
#> $ estimate_value <chr> "79", "69", "1", "0", "1", "1", "4464.58227848101", "30…
Notice that, by default, the “overall” group will be also included, as well as crossed strata (that means, sex == “Female” and ageGroup == “>35”).
tableObservationPeriod()
will help you to create a table
(see supported types with: visOmopResults::tableType()). By default it
creates a [gt] (https://gt.rstudio.com/) table.
summarisedResult <- summarisedResult <- summariseObservationPeriod(cdm$observation_period,
estimates = c("mean", "sd", "q05", "q95"),
sex = TRUE)
summarisedResult |>
tableObservationPeriod()
#> ℹ <median> [<q25> - <q75>] has not been formatted.
Observation period ordinal | Variable name | Estimate name |
CDM name
|
---|---|---|---|
mockOmopSketch | |||
overall | |||
all | Number records | N | 100 |
Number subjects | N | 100 | |
Records per person | mean (sd) | 1.00 (0.00) | |
Duration in days | mean (sd) | 4,423.55 (4,072.18) | |
1st | Number subjects | N | 100 |
Duration in days | mean (sd) | 4,423.55 (4,072.18) | |
Female | |||
all | Number records | N | 53 |
Number subjects | N | 53 | |
Records per person | mean (sd) | 1.00 (0.00) | |
Duration in days | mean (sd) | 4,302.11 (3,478.68) | |
1st | Number subjects | N | 53 |
Duration in days | mean (sd) | 4,302.11 (3,478.68) | |
Male | |||
all | Number records | N | 47 |
Number subjects | N | 47 | |
Records per person | mean (sd) | 1.00 (0.00) | |
Duration in days | mean (sd) | 4,560.49 (4,687.53) | |
1st | Number subjects | N | 47 |
Duration in days | mean (sd) | 4,560.49 (4,687.53) |
Finally, we can visualise the concept counts using
plotObservationPeriod()
.
summarisedResult <- summariseObservationPeriod(cdm$observation_period)
plotObservationPeriod(summarisedResult,
variableName = "Number subjects",
plotType = "barplot")
Note that either Number subjects
or
Duration in days
can be plotted. For
Number of subjects
, the plot type can be
barplot
, whereas for Duration in days
, the
plot type can be barplot
, boxplot
, or
densityplot
.”
summarisedResult <- summariseObservationPeriod(cdm$observation_period)
plotObservationPeriod(summarisedResult,
variableName = "Duration in days",
plotType = "densityplot",
facet = "observation_period_ordinal")
Additionally, if results were stratified by sex or age group, we can
further use facet
or colour
arguments to
highlight the different results in the plot. To help us identify by
which variables we can colour or facet by, we can use visOmopResult
package.
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
sex = TRUE)
plotObservationPeriod(summarisedResult,
variableName = "Duration in days",
plotType = "boxplot",
facet = "sex")
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)))
plotObservationPeriod(summarisedResult,
colour = "sex",
facet = "age_group")
OmopSketch can also help you to summarise the number of individuals in observation during specific intervals of time.
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "years")
summarisedResult |>
select(variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 118 × 5
#> variable_name estimate_name estimate_value additional_name additional_level
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Number records… count 1 time_interval 1961-01-01 to 1…
#> 2 Number records… count 3 time_interval 1962-01-01 to 1…
#> 3 Number records… count 4 time_interval 1963-01-01 to 1…
#> 4 Number records… count 4 time_interval 1964-01-01 to 1…
#> 5 Number records… count 4 time_interval 1965-01-01 to 1…
#> 6 Number records… count 4 time_interval 1966-01-01 to 1…
#> 7 Number records… count 4 time_interval 1967-01-01 to 1…
#> 8 Number records… count 6 time_interval 1968-01-01 to 1…
#> 9 Number records… count 6 time_interval 1969-01-01 to 1…
#> 10 Number records… count 6 time_interval 1970-01-01 to 1…
#> # ℹ 108 more rows
Note that you can adjust the time interval period using the
interval
argument, which can be set to either “years”,
“quarters”, “months” or “overall” (default value).
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "months")
summarisedResult |>
select(variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 1,404 × 5
#> variable_name estimate_name estimate_value additional_name additional_level
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Number records… count 1 time_interval 1961-07-01 to 1…
#> 2 Number records… count 1 time_interval 1961-08-01 to 1…
#> 3 Number records… count 1 time_interval 1961-09-01 to 1…
#> 4 Number records… count 1 time_interval 1961-10-01 to 1…
#> 5 Number records… count 1 time_interval 1961-11-01 to 1…
#> 6 Number records… count 1 time_interval 1961-12-01 to 1…
#> 7 Number records… count 1 time_interval 1962-01-01 to 1…
#> 8 Number records… count 1 time_interval 1962-02-01 to 1…
#> 9 Number records… count 1 time_interval 1962-03-01 to 1…
#> 10 Number records… count 2 time_interval 1962-04-01 to 1…
#> # ℹ 1,394 more rows
Along with the number of records in observation, you can also
calculate the number of person-days by setting the output
argument to c(“records”, “person-days”).
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("records", "person-days"))
summarisedResult |>
select(variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 4 × 5
#> variable_name estimate_name estimate_value additional_name additional_level
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Number person-d… count 442355 overall overall
#> 2 Number records … count 100 overall overall
#> 3 Number person-d… percentage 100 overall overall
#> 4 Number records … percentage 100 overall overall
We can further stratify our counts by sex (setting argument
sex = TRUE
) or by age (providing an age group). Notice that
in both cases, the function will automatically create a group called
overall with all the sex groups and all the age groups. We can
also define a date range of interest to filter the
observation_period
table accordingly.
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("records", "person-days"),
interval = "quarters",
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)),
dateRange = as.Date(c("1970-01-01", "2010-01-01")))
summarisedResult |>
select(strata_level, variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 1,984 × 6
#> strata_level variable_name estimate_name estimate_value additional_name
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Male &&& <35 Number person-da… count 184 time_interval
#> 2 Female &&& <35 Number person-da… count 198 time_interval
#> 3 Male Number person-da… count 184 time_interval
#> 4 Female Number person-da… count 198 time_interval
#> 5 Female Number records i… count 3 time_interval
#> 6 Female &&& <35 Number records i… count 3 time_interval
#> 7 Male &&& <35 Number records i… count 2 time_interval
#> 8 Male Number records i… count 2 time_interval
#> 9 Male &&& <35 Number person-da… count 184 time_interval
#> 10 Female &&& <35 Number person-da… count 276 time_interval
#> # ℹ 1,974 more rows
#> # ℹ 1 more variable: additional_level <chr>
Finally, we can visualise the concept counts using
plotInObservation()
.
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "years")
plotInObservation(summarisedResult)
#> `result_id` is not present in result.
#> `result_id` is not present in result.
Notice that either Number records in observation
and
Number person-days
can be plotted. If both have been
included in the summarised result, you will have to filter to only
include one variable at time:
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "years",
output = c("records", "person-days"))
plotInObservation(summarisedResult |>
filter(variable_name == "Number person-days"))
#> `result_id` is not present in result.
#> `result_id` is not present in result.
Additionally, if results were stratified by sex or age group, we can
further use facet
or colour
arguments to
highlight the different results in the plot. To help us identify by
which variables we can colour or facet by, we can use visOmopResult
package.
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "years",
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)))
plotInObservation(summarisedResult,
colour = "sex",
facet = "age_group")
#> `result_id` is not present in result.
#> `result_id` is not present in result.
Finally, disconnect from the cdm
PatientProfiles::mockDisconnect(cdm = cdm)