2 Introduction

In this vignette, we will explore the OmopSketch functions designed to provide an overview of the clinical tables within a CDM object (observation_period, visit_occurrence, condition_occurrence, drug_exposure, procedure_occurrence, device_exposure, measurement, observation, and death). Specifically, there are four key functions that facilitate this:

2.1 Create a mock cdm

Let’s see an example of its functionalities. To start with, we will load essential packages and create a mock cdm using the mockOmopSketch() database.

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(OmopSketch)

# Connect to mock database
cdm <- mockOmopSketch()
#> Note: method with signature 'DBIConnection#Id' chosen for function 'dbExistsTable',
#>  target signature 'duckdb_connection#Id'.
#>  "duckdb_connection#ANY" would also be valid

3 Summarise clinical tables

Let’s now use summariseClinicalTables()from the OmopSketch package to help us have an overview of one of the clinical tables of the cdm (i.e., condition_occurrence).

summarisedResult <- summariseClinicalRecords(cdm, "condition_occurrence")
#> ℹ Adding variables of interest to condition_occurrence.
#> ℹ Summarising records per person in condition_occurrence.
#> ℹ Summarising condition_occurrence: `in_observation`, `standard_concept`,
#>   `source_vocabulary`, `domain_id`, and `type_concept`.

summarisedResult |> print()
#> # A tibble: 20 × 13
#>    result_id cdm_name       group_name group_level      strata_name strata_level
#>        <int> <chr>          <chr>      <chr>            <chr>       <chr>       
#>  1         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  2         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  3         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  4         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  5         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  6         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  7         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  8         1 mockOmopSketch omop_table condition_occur… overall     overall     
#>  9         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 10         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 11         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 12         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 13         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 14         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 15         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 16         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 17         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 18         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 19         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> 20         1 mockOmopSketch omop_table condition_occur… overall     overall     
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> #   estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> #   additional_name <chr>, additional_level <chr>

Notice that the output is in the summarised result format.

We can use the arguments to specify which statistics we want to perform. For example, use the argument recordsPerPerson to indicate which estimates you are interested regarding the number of records per person.

summarisedResult <- summariseClinicalRecords(cdm, 
                                             "condition_occurrence",
                                             recordsPerPerson =  c("mean", "sd", "q05", "q95"))
#> ℹ Adding variables of interest to condition_occurrence.
#> ℹ Summarising records per person in condition_occurrence.
#> ℹ Summarising condition_occurrence: `in_observation`, `standard_concept`,
#>   `source_vocabulary`, `domain_id`, and `type_concept`.

summarisedResult |> 
    filter(variable_name == "records_per_person") |>
    select(variable_name, estimate_name, estimate_value)
#> # A tibble: 4 × 3
#>   variable_name      estimate_name estimate_value
#>   <chr>              <chr>         <chr>         
#> 1 records_per_person mean          19            
#> 2 records_per_person q05           13            
#> 3 records_per_person q95           27            
#> 4 records_per_person sd            4.3368

You can further specify if you want to include the number of records in observation (inObservation = TRUE), the number of concepts mapped (standardConcept = TRUE), which types of source vocabulary does the table contain (sourceVocabulary = TRUE), which types of domain does the vocabulary have (domainId = TRUE) or the concept’s type (typeConcept = TRUE).

summarisedResult <- summariseClinicalRecords(cdm, 
                                             "condition_occurrence",
                                             recordsPerPerson =  c("mean", "sd", "q05", "q95"),
                                             inObservation = TRUE,
                                             standardConcept = TRUE,
                                             sourceVocabulary = TRUE,
                                             domainId = TRUE,
                                             typeConcept = TRUE)
#> ℹ Adding variables of interest to condition_occurrence.
#> ℹ Summarising records per person in condition_occurrence.
#> ℹ Summarising condition_occurrence: `in_observation`, `standard_concept`,
#>   `source_vocabulary`, `domain_id`, and `type_concept`.

summarisedResult |> 
  select(variable_name, estimate_name, estimate_value) |> 
  glimpse()
#> Rows: 17
#> Columns: 3
#> $ variable_name  <chr> "Number subjects", "Number subjects", "Number records",…
#> $ estimate_name  <chr> "count", "percentage", "count", "mean", "q05", "q95", "…
#> $ estimate_value <chr> "100", "100", "1900", "19", "13", "27", "4.3368", "1900…

Additionally, you can also stratify the previous results by sex and age groups:

summarisedResult <- summariseClinicalRecords(cdm, 
                                             "condition_occurrence",
                                             recordsPerPerson =  c("mean", "sd", "q05", "q95"),
                                             inObservation = TRUE,
                                             standardConcept = TRUE,
                                             sourceVocabulary = TRUE,
                                             domainId = TRUE,
                                             typeConcept = TRUE,
                                             sex = TRUE,
                                             ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)))
#> ℹ Adding variables of interest to condition_occurrence.
#> ℹ Summarising records per person in condition_occurrence.
#> ℹ Summarising condition_occurrence: `in_observation`, `standard_concept`,
#>   `source_vocabulary`, `domain_id`, and `type_concept`.

summarisedResult |> 
  select(variable_name, strata_level, estimate_name, estimate_value) |> 
  glimpse()
#> Rows: 153
#> Columns: 4
#> $ variable_name  <chr> "Number subjects", "Number subjects", "Number records",…
#> $ strata_level   <chr> "overall", "overall", "overall", "overall", "overall", …
#> $ estimate_name  <chr> "count", "percentage", "count", "mean", "q05", "q95", "…
#> $ estimate_value <chr> "100", "100", "1900", "19", "13", "27", "4.3368", "1900…

Notice that, by default, the “overall” group will be also included, as well as crossed strata (that means, sex == “Female” and ageGroup == “>35”).

Also, see that the analysis can be conducted for multiple OMOP tables at the same time:

summarisedResult <- summariseClinicalRecords(cdm, 
                                             c("observation_period","drug_exposure"),
                                             recordsPerPerson =  c("mean","sd"),
                                             inObservation = FALSE,
                                             standardConcept = FALSE,
                                             sourceVocabulary = FALSE,
                                             domainId = FALSE,
                                             typeConcept = FALSE)
#> ℹ Adding variables of interest to observation_period.
#> ℹ Summarising records per person in observation_period.
#> ℹ Adding variables of interest to drug_exposure.
#> ℹ Summarising records per person in drug_exposure.

summarisedResult |> 
  select(group_level, variable_name, estimate_name, estimate_value) |> 
  glimpse()
#> Rows: 10
#> Columns: 4
#> $ group_level    <chr> "observation_period", "observation_period", "observatio…
#> $ variable_name  <chr> "Number subjects", "Number subjects", "Number records",…
#> $ estimate_name  <chr> "count", "percentage", "count", "mean", "sd", "count", …
#> $ estimate_value <chr> "100", "100", "100", "1", "0", "100", "100", "5600", "5…

3.1 Tidy the summarised object

tableClinicalRecords() will help you to tidy the previous results and create a gt table.

summarisedResult <- summariseClinicalRecords(cdm, 
                                             "condition_occurrence",
                                             recordsPerPerson =  c("mean", "sd", "q05", "q95"),
                                             inObservation = TRUE,
                                             standardConcept = TRUE,
                                             sourceVocabulary = TRUE,
                                             domainId = TRUE,
                                             typeConcept = TRUE, 
                                             sex = TRUE)
#> ℹ Adding variables of interest to condition_occurrence.
#> ℹ Summarising records per person in condition_occurrence.
#> ℹ Summarising condition_occurrence: `in_observation`, `standard_concept`,
#>   `source_vocabulary`, `domain_id`, and `type_concept`.

summarisedResult |> 
  tableClinicalRecords()
Variable name Variable level Estimate name
Database name
mockOmopSketch
condition_occurrence; overall
Number subjects - N (%) 100 (100.00%)
Number records - N 1,900.00
Records per person - Mean (SD) 19.00 (4.34)
q05 13.00
q95 27.00
In observation Yes N (%) 1,900 (100.00%)
Standard concept S N (%) 600 (31.58%)
- N (%) 1,300 (68.42%)
Source vocabulary No matching concept N (%) 1,900 (100.00%)
Type concept id Unknown type concept: 1 N (%) 1,900 (100.00%)
condition_occurrence; Female
Number subjects - N (%) 53 (100.00%)
Number records - N 982.00
Records per person - Mean (SD) 18.53 (4.08)
q05 13.60
q95 25.80
In observation Yes N (%) 982 (100.00%)
Standard concept S N (%) 315 (32.08%)
- N (%) 667 (67.92%)
Source vocabulary No matching concept N (%) 982 (100.00%)
Type concept id Unknown type concept: 1 N (%) 982 (100.00%)
condition_occurrence; Male
Number subjects - N (%) 47 (100.00%)
Number records - N 918.00
Records per person - Mean (SD) 19.53 (4.59)
q05 13.30
q95 26.70
In observation Yes N (%) 918 (100.00%)
Standard concept S N (%) 285 (31.05%)
- N (%) 633 (68.95%)
Source vocabulary No matching concept N (%) 918 (100.00%)
Type concept id Unknown type concept: 1 N (%) 918 (100.00%)

4 Summarise record counts

OmopSketch can also help you to summarise the trend of the records of an OMOP table. See the example below, where we use summariseRecordCount() to count the number of records within each year, and then, we use plotRecordCount() to create a ggplot with the trend.

summarisedResult <- summariseRecordCount(cdm, "drug_exposure", interval = "years")

summarisedResult |> print()
#> # A tibble: 60 × 13
#>    result_id cdm_name       group_name group_level   strata_name strata_level
#>        <int> <chr>          <chr>      <chr>         <chr>       <chr>       
#>  1         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  2         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  3         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  4         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  5         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  6         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  7         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  8         1 mockOmopSketch omop_table drug_exposure overall     overall     
#>  9         1 mockOmopSketch omop_table drug_exposure overall     overall     
#> 10         1 mockOmopSketch omop_table drug_exposure overall     overall     
#> # ℹ 50 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> #   estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> #   additional_name <chr>, additional_level <chr>

summarisedResult |> plotRecordCount()

Note that you can adjust the time interval period using the interval argument, which can be set to either “years” or “months”. See the example below, where it shows the number of records every 18 months:

summariseRecordCount(cdm, "drug_exposure", interval = "months") |> 
  plotRecordCount()

We can further stratify our counts by sex (setting argument sex = TRUE) or by age (providing an age group). Notice that in both cases, the function will automatically create a group called overall with all the sex groups and all the age groups.

summariseRecordCount(cdm, "drug_exposure",
                      interval = "months",
                      sex = TRUE, 
                      ageGroup = list("<30" = c(0,29),
                                     ">=30" = c(30,Inf))) |> 
  plotRecordCount()

By default, plotRecordCount() does not apply faceting or colour to any variables. This can result confusing when stratifying by different variables, as seen in the previous picture. We can use VisOmopResults package to help us know by which columns we can colour or face by:

summariseRecordCount(cdm, "drug_exposure",
                     interval = "months", 
                     sex = TRUE,
                     ageGroup = list("0-29" = c(0,29),
                                     "30-Inf" = c(30,Inf)))  |>
  visOmopResults::tidyColumns()
#> [1] "cdm_name"       "omop_table"     "age_group"      "sex"           
#> [5] "variable_name"  "variable_level" "count"          "time_interval" 
#> [9] "interval"

Then, we can simply specify this by using the facet and colour arguments from plotRecordCount()

summariseRecordCount(cdm, "drug_exposure",
                     interval = "months",
                     sex = TRUE,
                     ageGroup = list("0-29" = c(0,29),
                                     "30-Inf" = c(30,Inf))) |>
    plotRecordCount(facet = omop_table ~ age_group, colour = "sex")

Finally, disconnect from the cdm

  PatientProfiles::mockDisconnect(cdm = cdm)