--- title: "Introduction to MIIPW" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to MIIPW} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Introduction This is a vignette for our package 'MIIPW'. It contains function for fitting GEE model for repeated measurement data. We have included mainly five function * meanscore * sipw * aipw * misipw * miaipw * QICmiipw We have included a repeated measured gene expression data in our package. Models are fitted to the dataset available in our package as below. ```{r} library(MIIPW) data("srdata1") head(srdata1) apply(srdata1,2,anyNA) mice::md.pattern(srdata1[,-c(1,2)],plot = TRUE) ``` # Meanscore method Here we have considered the response model for __C6kine__, depending on the other covariates in dataset srdata1. Formula object below defines the model struture. Imputation model for the methods described in \link{MeanScore} can be specified through the predictor matrix function available in mice package. ```{r} formula<-C6kine~ActivinRIB+ActivinRIIA+ActivinRIIAB+Adiponectin+AgRP+ALCAM pMat<-mice::make.predictorMatrix(srdata1[names(srdata1)%in%all.vars(formula)]) m1<-MeanScore(data=srdata1, formula<-formula,id='ID', visit='Visit',family='gaussian',init.beta = NULL, init.alpha=NULL,init.phi=1,tol=.00001,weights = NULL, corstr = 'exchangeable',maxit=50,m=2,pMat=pMat) summary_meanscore(m1) ``` The summary_meanscore() and summary_ipw() summarises the results from fitted object obtained from meanscore and ipw functions. It provides the list of parameter estimates, wald statistics, p-value, phi value. # SIPW, AIPW, miSIPW, miAIPW The inverse probability weighted method can be used through the function \code{SIPW,AIPW,miSIPW,miAIPW}. Similarly we need to specify a predictor matrix for the imputation of score fucntion missing due to incomplete data. The \code{pMat} argument takes the predictor matrix to be used in \link{mice} inside the function. The demo code for this model as follows : ```{r eval=FALSE} m2<-SIPW(data=srdata1,formula<-formula,id='ID', visit='Visit',family='gaussian',corstr = 'exchangeable',maxit=5) m3<-AIPW(data=srdata1, formula<-formula,id='ID', visit='Visit',family='gaussian',init.beta = NULL, init.alpha=NULL,init.phi=1,tol=.00001,weights = NULL, corstr = 'exchangeable',maxit=50,m=3,pMat=pMat) m4<-miSIPW(data=srdata1, formula<-formula,id='ID', visit='Visit',family='gaussian',init.beta = NULL, init.alpha=NULL,init.phi=1,tol=0.001,weights = NULL, corstr = 'exchangeable',maxit=50,m=2,pMat=pMat) m1<-miAIPW(data=srdata1, formula<-formula,id='ID', visit='Visit',family='gaussian',init.beta = NULL, init.alpha=NULL,init.phi=1,tol=.00001,weights = NULL, corstr = 'exchangeable',maxit=4,m=2,pMat=pMat) ``` # Model Selection Crietrion QIC The \code{QICmiipw} function provides the list of various model selection criterion based on quasi liklihood. The demo code is as follows ```{r} m1<-MeanScore(data=srdata1, formula<-formula,id='ID', visit='Visit',family='gaussian',init.beta = NULL, init.alpha=NULL,init.phi=1,tol=.00001,weights = NULL, corstr = 'exchangeable',maxit=50,m=2,pMat=pMat) m11<-MeanScore(data=srdata1, formula<-formula,id='ID', visit='Visit',family='gaussian',init.beta = NULL, init.alpha=NULL,init.phi=1,tol=.00001,weights = NULL, corstr = 'independent',maxit=50,m=2,pMat=pMat) QICmiipw(model.R=m1,model.indep=m11,family="gaussian") ## ```