--- title: "learningRlab" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to LearningRlab} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} library(LearningRlab) library(graphics) knitr::opts_chunk$set( comment = "#>", collapse = TRUE ) ``` There are three families of fuctions in LearningRlab: 1. Main functions: these functions return the result of performing the process represented with the function. 1. Explained fuctions: these funcions returns the process itself to get the result, with the result. 1. User Interactive Functions: these functions maintain an interactive contact with the user to guide him in the resolution of the represented function. ## Main Functions: To explain the use of each function, we present a dataset to work with them: ```{r} data <- c(1,1,2,3,4,7,8,8,8,10,10,11,12,15,20,22,25) plot(data); data2 <- c(1,1,4,5,5,5,7,8,10,10,10,11,20,22,22,24,25) plot(data2); #Binomial variables n = 3 x = 2 p = 0.7 #Poisson variables lam = 2 k = 3 #Normal variables nor = 0.1 #T-Student variables xt = 290 ut = 310 st = 50 nt = 16 ``` The arithmetic mean calculus function: ```{r} mean_(data) ``` The geometric mean calculus function: ```{r} geometricMean_(data) ``` The mode calculus function: ```{r} mode_(data) ``` The median calculus function: ```{r} median_(data) ``` The standard deviation calculus function: ```{r} standardDeviation_(data) ``` The average absolute deviation calculus function: ```{r} averageDeviation_(data) ``` The variance calculus function: ```{r} variance_(data) ``` The quartiles calculus function: ```{r} quartile_(data) ``` The percentile calculus function: ```{r} percentile_(data,0.3) ``` The absolute frecuency calculus function: ```{r} frecuency_abs(data,1) ``` The relative frecuency calculus function: ```{r} frecuency_relative(data,20) ``` The absolute acumulated frecuency calculus function: ```{r} frecuency_absolute_acum(data,1) ``` The relative acumulated frecuency calculus function: ```{r} frecuency_relative_acum(data,20) ``` The covariance calculus function: ```{r} covariance_(data, data2) ``` The harmonic mean calculus funtion: ```{r} harmonicMean_(data) ``` The pearson correlaction calculus funtion: ```{r} pearson_(data,data2) ``` The coefficient of variation calculus funtion: ```{r} cv_(data) ``` The Laplace rule calculus funtion: ```{r} laplace_(data,data2) ``` The binomial distribution calculus funtion: ```{r} binomial_(n,x,p) ``` The poisson distribution calculus funtion: ```{r} poisson_(k,lam) ``` The normal distribution calculus funtion: ```{r} normal_(nor) ``` The tstudent distribution calculus funtion: ```{r} tstudent_(xt,ut,st,nt) ``` The chisquared distribution calculus funtion: ```{r} chisquared_(data,data2) ``` The fisher distribution calculus funtion: ```{r} fisher_(data,data2) ``` ##Explained Functions: For each main function, there are an explained function to see the calculus process: - arithmetic mean: ```{r} explain.mean(data) ``` - geometric mean: ```{r} explain.geometricMean(data) ``` - mode: ```{r} explain.mode(data) ``` - median: ```{r} explain.median(data) ``` - standard deviation: ```{r} explain.standardDeviation(data) ``` - average absolute deviation: ```{r} explain.averageDeviation(data) ``` - variance: ```{r} explain.variance(data) ``` - quartile: ```{r} explain.quartile(data) ``` - percentile: ```{r} explain.percentile(data) ``` - absolute frecuency: ```{r} explain.absolute_frecuency(data,10) ``` - relative frecuency: ```{r} explain.relative_frecuency(data,8) ``` - absolute acumulated frecuency: ```{r} explain.absolute_acum_frecuency(data,10) ``` - relative acumulated frecuency: ```{r} explain.relative_acum_frecuency(data,8) ``` - covariance: ```{r} explain.covariance(data,data2) ``` - harmonic mean: ```{r} explain.harmonicMean(data) ``` - pearson correlaction: ```{r} explain.pearson(data,data2) ``` - coefficient of variation: ```{r} explain.cv(data) ``` - Laplace rule: ```{r} explain.laplace(data,data2) ``` - binomial distribution: ```{r} explain.binomial(n,x,p) ``` - poisson distribution: ```{r} explain.poisson(k,lam) ``` - normal distribution: ```{r} explain.normal(nor) ``` - tstudent distribution: ```{r} explain.tstudent(xt,ut,st,nt) ``` - chisquared distribution: ```{r} explain.chisquared(data,data2) ``` - fisher distribution: ```{r} explain.fisher(data,data2) ``` ##User Interactive Functions: These functions are designed for the user to practice with them, and they are the following: - interactive.mean() - interactive.geometricMean() - interactive.mode() - interactive.median() - interactive.standardDeviation() - interactive.averageDeviation() - interactive.variance() - interactive.quartile() - interactive.percentile() - interactive.absolute_frecuency() - interactive.relative_frecuency() - interactive.absolute_acum_frecuency() - interactive.relative_acum_frecuency() - interactive.covariance() - interactive.harmonicMean() - interactive.pearson() - interactive.cv() - interactive.laplace() - interactive.binomial() - interactive.poisson() - interactive.normal() - interactive.tstudent() - interactive.chisquared() - interactive.fisher()