## ----initialization, echo = FALSE, results = 'hide', message = FALSE---- library("knitr") opts_chunk$set(concordance = TRUE, tidy = FALSE, strip.white = TRUE, dev = 'pdf', prompt = TRUE) # Change command prompt appearance #render_sweave() # Render output as Sweave, no syntax highlight etc. options(replace.assign = TRUE, width = 70, continue = "+ ", prompt = "> ", useFancyQuotes = FALSE) read_chunk('GMCM-Standalone.R') # Read chunks in the script to input here ## ----chunk_1, echo = FALSE, results = 'hide', message = FALSE, warning = FALSE---- # # General initial parameters, packages, and auxiliary functions used throughout # rm(list = ls()) # Remove any objects in workspace (ensure a clean run) # Set working directory if nessesary # setwd("") # Should all saved data be recomputed? recompute <- FALSE # Set recompute to TRUE if saved data is to be recomputed and not just loaded. # WARNING! Setting will increase the running time to ~ 5 days on a regular # laptop (depending on the use of parallel computations). # Alternatively, "cache.RData" can be deleted or particular objects can # be removed using rm() to force the recomputation # We load all saved objects that are computationally time consuming if (file.exists("cache.RData")) { load("cache.RData") } # Global plotting parameters used in some plots axiscex <- 1.7 # # Loading needed libraries # #install.packages(c("GMCM", "idr", "Hmisc", "RColorBrewer", "jpeg")) library("GMCM") library("idr") library("Hmisc") library("RColorBrewer") library("jpeg") # To enable multicore processing, change the %do% to %dopar% and # uncomment the relevant packages below. library("foreach") # library("doMC") #library("doParallel") # Use this package on windows # registerDoMC(detectCores()) # Defining auxiliary functions used # Pretty big number formatting prettyN <- function (x) { prettyNum(x, big.mark = "{,}", scientific = FALSE) } # Function for appending objects to an existing .RData file # I used modified version of a function created by user "flodel": # http://stackoverflow.com/questions/11813096/updating-an-existing-rdata-file resave <- function(..., list = character(), file) { if (!file.exists(file)) { # If file does not exists resave functions as save save(..., list = list, file = file) } previous <- load(file) # Returns the loaded object names var.names <- c(list, as.character(substitute(list(...)))[-1L]) for (var in var.names) { assign(var, get(var, envir = parent.frame())) } save(list = unique(c(previous, var.names)), file = file) } ################################################################################ # Create Figure 1 of Section "2. Gaussian mixture copula models" ################################################################################ # Setting a seed for the simulation of data set.seed(120312) # Choosing some arbitrary marignal distributions for the general GMCM inv.M1 <- function(u) { M1 <- function(u1) qbeta(u1, shape1 = 0.5, shape2 = 0.9) M2 <- function(u2) qchisq(u2, df = 5) u[,1] <- M1(u[,1]) u[,2] <- M2(u[,2]) return(u) } # Choosing some arbitrary marignal distributions for the special GMCM inv.M2 <- function(u) { M1 <- function(u1) qbeta(u1, shape1 = 0.5, shape2 = 0.9) M2 <- function(u2) qbeta(u2, shape1 = 1.3, shape2 = 1.1) u[,1] <- M1(u[,1]) u[,2] <- M2(u[,2]) return(u) } # Simulate general GMCM data theta1 <- list(m = 3, d = 2, pie = c(1/6,3/6,2/6), mu = list(comp1 = c(0,0), comp2 = c(2,-1)*2, comp3 = c(-1,-0.5)*2), sigma = list(comp1 = cbind(c(1,0),c(0,1)), comp2 = cbind(c(2,1.78),c(1.78,2)), comp3 = cbind(c(1,-0.53),c(-0.53,1)))) class(theta1) <- "theta" data1 <- SimulateGMCMData(n = 10000, theta = theta1) z1 <- data1$z u1 <- data1$u x1 <- inv.M1(u1) # Simulate special GMCM data par <- c(0.8, mu = 2, sigma = 1, rho = 0.8) data2 <- SimulateGMCMData(n = 10000, d = 2, par = par) theta2 <- data2$theta z2 <- data2$z u2 <- data2$u x2 <- inv.M2(u2) # # Create Figure 1 # jpeg("Figure1.jpg", height = 2*7*0.5, width = 3*7*0.5, units = "in", res = 100) { lab.cex <- 1 # Setting plotting parameters par(mgp = c(2.3,0.8,0), oma = c(0,2,0,0)+0.1, mar = c(3, 3.3, 2, 0.1), xaxs = "i", yaxs = "i", mfrow = c(2,3), xpd = TRUE) col1 <- c("white", "grey60") col2 <- c("black", "orange", "steelblue") pchs <- c(1,3,4) pcex <- 0.6 labs <- pretty(seq(0,1)) # Panel A: Observed plot(x1, axes = FALSE, type = "n", xlab = "", ylab = "") points(x1, col = col2[data1$K], pch = pchs[data1$K], cex = pcex) mtext(expression(paste(x[1])), 1, line = 2, cex = lab.cex) mtext(expression(paste(x[2])), 2, line = 2, cex = lab.cex) axis(1, labels = FALSE, at = axTicks(1), lwd = axiscex) axis(2, labels = FALSE, at = axTicks(2), lwd = axiscex) mtext("A", line = 0.9, adj = -0.05, cex = 1, font = 2) mtext("Observed process", line = 0.5, cex = 1, font = 2) mtext("General GMCM", line = 3.5, side = 2, cex = 1, font = 2) # Panel B: Copula density plot(1, type = "n", axes = FALSE, xlim = c(0,1), xlab = "", ylim = c(0,1), ylab = "")#, asp = 1) points(u1, col = col2[data1$K], pch = pchs[data1$K], cex = pcex) mtext(expression(paste(u[1])), 1, line = 2, cex = lab.cex) mtext(expression(paste(u[2])), 2, line = 2, cex = lab.cex) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("B", line = 0.9, adj = -0.05, cex = 1, font = 2) mtext("Copula process", line = 0.5, cex = 1, font = 2) # Panel C: Latent plot(1, type = "n", axes = FALSE, xlim = range(z1[,1]), xlab = "", ylim = range(z1[,2]), ylab = "")#, asp = 1) mtext(expression(paste(z[1])), 1, line = 2, cex = lab.cex) mtext(expression(paste(z[2])), 2, line = 2, cex = lab.cex) points(z1, col = col2[data1$K], pch = pchs[data1$K], cex = pcex) axis(1, lwd = axiscex) axis(2, lwd = axiscex) mtext("C", line = 0.9, adj = -0.05, cex = 1, font = 2) mtext("Latent process", line = 0.5, cex = 1, font = 2) col2 <- c("steelblue", "black", "orange") # Panel D: Observed process plot(x2, axes = FALSE, type = "n", xlab = "", ylab = "") points(x2, col = col2[data2$K], pch = pchs[data2$K], cex = pcex) mtext(expression(paste(x[1])), 1, line = 2, cex = lab.cex) mtext(expression(paste(x[2])), 2, line = 2, cex = lab.cex) axis(1, labels=FALSE, at = axTicks(1), lwd = axiscex) axis(2, labels=FALSE, at = axTicks(2), lwd = axiscex) mtext("D", line = 0.9, adj = -0.05, cex = 1, font = 2) mtext("Special GMCM", line = 3.5, side = 2, cex = 1, font = 2) # Panel E: Copula density plot(1, type = "n", axes = FALSE, xlim = c(0,1), xlab = "", ylim = c(0,1), ylab = "")#, asp = 1) points(u2, col = col2[data2$K], pch = pchs[data2$K], cex = pcex) mtext(expression(paste(u[1])), 1, line = 2, cex = lab.cex) mtext(expression(paste(u[2])), 2, line = 2, cex = lab.cex) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("E", line = 0.9, adj = -0.05, cex = 1, font = 2) # Panel F: Latent process plot(1, type = "n", axes = FALSE, xlim = range(z2[,1]), xlab = "", ylim = range(z2[,2]), ylab = "")#, asp = 1) points(z2, col = col2[data2$K], pch = pchs[data2$K], cex = pcex) mtext(expression(paste(z[1])), 1, line = 2, cex = lab.cex) mtext(expression(paste(z[2])), 2, line = 2, cex = lab.cex) axis(1, lwd = axiscex) axis(2, lwd = axiscex) mtext("F", line = 0.9, adj = -0.05, cex = 1, font = 2) } dev.off() ################################################################################ # The following performs the speed tests of section # "4.2. Runtime and technical comparison" ################################################################################ # Set seed for the simulation of data set.seed(1) # Setting parameters for the simulation # Start values: alpha <- 0.5 mu <- 2.5 sigma <- 0.5 rho <- 0.8 speed.eps <- 0.001 # Convergence epsilon max.ite <- 1000 # Maximum iterations speed.par <- c(0.7, 2, 1, 0.9) # True parameters n.observations <- c(1000, 10000, 100000) # Simulated observations # We only do the computation is the saved speed.res is not present # or if recompute is set to TRUE. if (!exists("speed.res") | recompute) { speed.res <- foreach(n = n.observations, .combine = "rbind", .packages = c("GMCM", "idr")) %do% { # Simulating data x <- SimulateGMCMData(n = n, par = speed.par) # Ranking and scaling u <- Uhat(x$u) # Li et al. (2011) PEM algorithm and results idr.time <- system.time({ idr.out <- est.IDR(u, mu, sigma, rho, alpha, eps = speed.eps, max.ite = max.ite) }) if (length(idr.out$loglik.trace) == 2) { stop("est.IDR only took two interations") } li.res <- unlist(idr.out$para[c("p", "mu", "sigma", "rho")]) # GMCM package PEM timing gmcm.time.pem <- system.time({ my.res <- fit.meta.GMCM(u, init.par = c(alpha, mu, sigma, rho), method = "PEM", trace.theta = TRUE, max.ite = max.ite, verbose = FALSE) }) # GMCM package NM timing gmcm.time.nm <- system.time({ my.res2 <- fit.meta.GMCM(u, init.par = c(alpha, mu, sigma, rho), method = "NM", trace.theta = TRUE, max.ite = max.ite, verbose = FALSE) }) # Getting convergence information aa <- c(it = length(idr.out$loglik.trace), idr.time[3]) bb <- c(it = ncol(my.res[[2]]$loglik.tr), gmcm.time.pem[3]) cc <- c(it = unname(my.res2[[2]]$counts[1]), gmcm.time.nm[3]) res <- rbind("idr-pkg PEM" = aa, "gmcm-pkg PEM" = bb, "gmcm-pkg NM" = cc) res <- cbind(res, "$s/n$" = res[,2]/res[,1]) res <- cbind(res, "Rel.\\ speed" = res[,3]/res[3,3]) res <- cbind(rbind(unlist(idr.out$para)[c(1,3,4,2)], my.res[[1]], my.res2[[1]]), res) res <- cbind(n.obs = n, res) # speed.res <- rbind(speed.res, res) cat("Speed test with", n, "observations finished\n"); flush.console() return(res) } resave(speed.res, file = "cache.RData") } # Print the results #print(speed.res) ################################################################################ # The following performs the comparison of the different fitting procedures # in section "4.2. Runtime and technical comparison" # NOTE: Some of the computations are VERY time consuming. I.e., the computation # time is measured in days for some as warned below. ################################################################################ # The structure of this section is as follows: # 1. Some initialization of parameters and aux. functions # 2. Simulate the "n.sims" datasets and starting parameters # 3. Fit the special model using NM to the generated datasets # 4. Fit the special model using SANN ... # 5. Fit the special model using L-BFGS ... # 6. Fit the special model using L-BFGS-B ... # 7. Fit the special model using PEM ... # 8. Fit the special model using PEM from the idr-package ... # 9. Format the results and create Figure 4 # Setting seed to ensure reproducibiity of results set.seed(1) # Setting parameters of simulations n.sims <- simulation.n.sims <- 1000 # Number of simulated datasets n.obs <- simulation.n.obs <- 10000 # Number of observations in each dataset max.ite <- simulation.max.ite <- 2000 # Maximum number of interations d <- 2 # Dimension of data # Define the true parameters true.par <- simulation.true.par <- c(alpha1 = 0.90, mu = 3, sigma = 2, rho = 0.5) # List the available fitting methods methods <- c("NM", "SANN", "L-BFGS", "L-BFGS-B", "PEM (GMCM)", "PEM (idr)") n.methods <- length(methods) # Define an error and warning handler # The function is based off # http://svn.r-project.org/R/trunk/src/library/base/demo/error.catching.R tryCatch.W.E <- function(expr) { W <- NULL w.handler <- function(w){ # warning handler W <<- w invokeRestart("muffleWarning") } e.handler <- function(e){ e } value <- withCallingHandlers(tryCatch(expr, error = e.handler), warning = w.handler) if ("error" %in% class(value)) { E <- value value <- NULL } else { E <- NULL } return(list("value" = value, "error" = E, "warning" = W)) } # # Simulate GMCM data and starting parameters # Approximate runtime: 13 seconds # cat("Simulating", n.sims, "datasets and start parameters... "); flush.console() sim.tmp <- foreach(i = seq_len(n.sims), .packages = "GMCM") %do% { # Draw random starting values and simulate from the GMCM return(list(startval = c(rbeta(1,1.5,1.5), abs(rnorm(1,3,1)), rchisq(1,1), rbeta(1,1.5,1.5)), simdata = SimulateGMCMData(n = n.obs, par = true.par, d = d))) } simulation.start.par <- t(sapply(sim.tmp, "[[", "startval")) colnames(simulation.start.par) <- names(true.par) simulation.data <- lapply(sim.tmp, "[[", "simdata") rm(sim.tmp) # To save space in the RData file. Data is not saved. Here. cat("Done.\n") # # Fit using Nelder-Mead # # Only do the computation if stored data is not available or if forced by # recompute # Approximate runtime: 15 minutes (6 mins in parallel) if (!exists("simulation.res.NM") | recompute) { st.tot <- proc.time() simulation.res.NM <- foreach(i = seq_len(n.sims), .packages = "GMCM", .inorder = FALSE) %do% { x <- Uhat(simulation.data[[i]]$u) K <- simulation.data[[i]]$K st <- proc.time() tmp <- tryCatch.W.E(fit.meta.GMCM(u = x, init.par = simulation.start.par[i, ], method = "NM", trace.theta = TRUE, positive.rho = TRUE, max.ite = max.ite, verbose = FALSE, reltol = 1e-4)) time <- (proc.time()-st)[3] par <- tmp$value[[1]] ite <- tmp$value[[2]]$counts[[1]] Khat <- (get.IDR(x, par)$idr <= 0.5) + 1 acc <- sum(diag(table(K, Khat)))/length(K) return(list("par" = par, "error" = tmp$error, "warning" = tmp$warning, "ite" = ite, "acc" = acc, "time" = time)) } resave(simulation.res.NM, file = "cache.RData") cat("\n## Nelder-Mead done ##\n\n") cat("Time:", (proc.time()-st.tot)[3] %/% 60 ,"min ellapsed\n") } # # Fit using SANN # set.seed(65) # Since the SANN procedure is stochastic # Approximate runtime: 309 minutes ~ 5 hours (WARNING !!!) (2.2 hrs with par) # if (!exists("simulation.res.SANN") | recompute) { st.tot <- proc.time() simulation.res.SANN <- foreach(i = seq_len(n.sims), .packages = "GMCM", .inorder = FALSE) %do% { x <- Uhat(simulation.data[[i]]$u) K <- simulation.data[[i]]$K st <- proc.time() tmp <- tryCatch.W.E(fit.meta.GMCM(u = x, init.par = simulation.start.par[i, ], method = "SANN", trace.theta = TRUE, positive.rho = TRUE, max.ite = 3000, verbose = FALSE)) time <- (proc.time()-st)[3] par <- tmp$value[[1]] ite <- tmp$value[[2]]$counts[[1]] if(!is.null(par)) { Khat <- (get.IDR(x, par)$idr <= 0.5)+1 acc <- sum(diag(table(K, Khat)))/length(K) } else { Khat <- NULL acc <- NULL } return(list("par" = par, "error" = tmp$error, "warning" = tmp$warning, "ite" = ite, "acc" = acc, "time" = time)) } resave(simulation.res.SANN, file = "cache.RData") cat("\n## SANN done ##\n\n") cat("Time:", (proc.time()-st.tot)[3] %/% 60 ,"min ellapsed\n") } # # Fit using L-BFGS # # Approximate runtime: 85 minutes ~ 1.5 hours (!!!) if (!exists("simulation.res.LBFGS") | recompute) { st.tot <- proc.time() simulation.res.LBFGS <- foreach(i = seq_len(n.sims), .packages = "GMCM", .inorder = FALSE) %do% { x <- Uhat(simulation.data[[i]]$u) K <- simulation.data[[i]]$K st <- proc.time() tmp <- tryCatch.W.E(fit.meta.GMCM(u = x, init.par = simulation.start.par[i, ], method = "L-BFGS", trace.theta = TRUE, positive.rho = TRUE, max.ite = max.ite, verbose = FALSE, factr = 1e-4)) time <- (proc.time()-st)[3] par <- tmp$value[[1]] ite <- tmp$value[[2]]$counts[[1]] if(!is.null(par)) { Khat <- (get.IDR(x, par)$idr<=0.5)+1 acc <- sum(diag(table(K, Khat)))/length(K) } else { Khat <- NULL acc <- NULL } return(list("par" = par, "error" = tmp$error, "warning" = tmp$warning, "ite" = ite, "acc" = acc, "time" = time)) } cat("\n## L-BFGS done ##\n\n") resave(simulation.res.LBFGS, file = "cache.RData") } # # Fit using L-BFGS-B # # Approximate runtime: 96 minutes ~ 1.5 hours (half if parallel) if (!exists("simulation.res.LBFGSB") | recompute) { st.tot <- proc.time() simulation.res.LBFGSB <- foreach(i = seq_len(n.sims), .packages = "GMCM", .inorder = FALSE) %do% { x <- Uhat(simulation.data[[i]]$u) K <- simulation.data[[i]]$K st <- proc.time() tmp <- tryCatch.W.E(fit.meta.GMCM(u = x, init.par = simulation.start.par[i, ], method = "L-BFGS-B", trace.theta = TRUE, positive.rho = TRUE, max.ite = max.ite, verbose = FALSE, factr = 1e-4)) time <- (proc.time()-st)[3] par <- tmp$value[[1]] ite <- tmp$value[[2]]$counts[[1]] if(!is.null(par)) { Khat <- (get.IDR(x, par)$idr<=0.5)+1 acc <- sum(diag(table(K, Khat)))/length(K) } else { Khat <- NULL acc <- NULL } return(list("par" = par, "error" = tmp$error, "warning" = tmp$warning, "ite" = ite, "acc" = acc, "time" = time)) } cat("\n\n## L-BFGS-B done ##\n\n\n") resave(simulation.res.LBFGSB, file = "cache.RData") } # # Fit using PEM in GMCM # # Approximate runtime: 175 minutes ~ 3 hours (!!!) if (!exists("simulation.res.PEM") | recompute) { st.tot <- proc.time() simulation.res.PEM <- foreach(i = seq_len(n.sims), .packages = "GMCM", .inorder = FALSE) %do% { x <- Uhat(simulation.data[[i]]$u) K <- simulation.data[[i]]$K st <- proc.time() tmp <- tryCatch.W.E(fit.meta.GMCM(u = x, init.par = simulation.start.par[i, ], method = "PEM", trace.theta = TRUE, positive.rho = TRUE, max.ite = max.ite, verbose = FALSE, eps = 1e-4)) time <- (proc.time()-st)[3] par <- tmp$value[[1]] ite <- length(tmp$value[[2]]$theta.tr) if(!is.null(par)) { Khat <- (get.IDR(x, par)$idr<=0.5)+1 acc <- sum(diag(table(K, Khat)))/length(K) } else { Khat <- NULL acc <- NULL } return(list("par" = par, "error" = tmp$error, "warning" = tmp$warning, "ite" = ite, "acc" = acc, "time" = time)) } cat("\n\n## PEM in GMCM done ##\n\n\n") resave(simulation.res.PEM, file = "cache.RData") } # # Fit using PEM in idr # # WARNING: if the file is missing or recompute is TRUE, # then running the following if condition will take a long time! # Approximate runtime: 5810 minutes ~ 4 days (!!! WARNING !!!) if (!exists("simulation.res.PEMidr") | recompute) { st.tot <- proc.time() simulation.res.PEMidr <- foreach(i = seq_len(n.sims), .packages = "idr", .inorder = FALSE) %do% { x <- Uhat(simulation.data[[i]]$u) K <- simulation.data[[i]]$K start.par <- simulation.start.par[i, ] st <- proc.time() tmp <- tryCatch.W.E(est.IDR(x = x, mu = start.par[2], sigma = start.par[3], rho = start.par[4], p = 1-start.par[1], eps = 1e-4, max.ite = max.ite)) time <- (proc.time()-st)[3] par <- unlist(tmp$value$para)[c("p","mu","sigma","rho")] par[1] <- 1 - par[1] ite <- length(tmp$value$loglik.trace) if(!is.null(par)) { Khat <- (get.IDR(x, par)$idr<=0.5)+1 acc <- sum(diag(table(K, Khat)))/length(K) } else { Khat <- NULL acc <- NULL } return(list("par" = par, "error" = tmp$error, "warning" = tmp$warning, "ite" = ite, "acc" = acc, "time" = time)) } cat("\n## PEM in idr done ##\n\n") resave(simulation.res.PEMidr, file = "cache.RData") } # # Extract the information from the fitting procedures and # create Figure 4 # # Function to get data from the lists Get <- function(x, y) { x <- lapply(x, "[[", y) x <- x[!sapply(x, is.null)] if (identical(x, list())) { integer(0) } else { simplify2array(x) } } # Function to handle some formatting formatForFig <- function (x, digits = 2) { m1 <- mean(x, na.rm = TRUE) m2 <- sd(x, na.rm = TRUE) m1 <- formatC(m1, format = "f", digits = digits) m2 <- formatC(m2, format = "f", digits = digits) paste(m1, "\n(", m2, ")", sep = "") } # Initialize object to store information about the number of iterations to # reach convergence, warning messages, and error messages. simulation.ites <- vector("list", length(methods)) warning.messages <- vector("list", length(methods)) error.messages <- vector("list", length(methods)) names(simulation.ites) <- rev(methods) # Naming the lists names(warning.messages) <- rev(methods) names(error.messages) <- rev(methods) # Parameter estimates jpeg("Figure4.jpg", height = 7, width = 2*7, units = "in", res = 100) { # Setting plotting parameters par(mfrow = c(1,6), mar = c(4.1, 0, 3.1, 0), oma = c(0,6,0,2), cex = 1.2, mgp = c(2.3,0.8,0)) cols <- brewer.pal(n = length(methods), "Dark2") # Defining colours # Defining some helpful objects estimate <- c("alpha[1]", "mu", "sigma", "rho") estimate2 <- c("hat(alpha)[1]", "hat(mu)", "hat(sigma)", "hat(rho)") ylims <- rbind(c(0, -10, 0, -0.5, 0), c(1, 10, 6, 1, 1)) # Plotting the six "panels" for (i in 1:6) { if (i <= 4) { plot(1, ylim = c(0.5,6.5) , type = "n", xlim = ylims[,i], axes = FALSE, ylab = "", xlab = parse(text = estimate2[i])) header <- parse(text=paste(estimate,"==",true.par,sep=""))[i] title(main = header) if (i == 1) axis(2, at = length(methods):1, lab = methods, las = 2, lwd = axiscex) abline(v = true.par[i], col = "dark gray") box(lwd = axiscex) } else { if (i == 6) { plot(1, xlim = c(0,2000), ylim = c(0.5,6.5), type = "n", axes = FALSE, xlab = "Iterations", ylab = "", main = "") axis(3, lwd = axiscex) box(lwd = axiscex) } if (i == 5) { plot(1, xlim = c(0,1), ylim = c(0.5,6.5), type = "n", axes = FALSE, xlab = "", ylab = "", xaxt = "n") } } if (i != 5) { if (i %in% 2:3) { lab <- c("", axTicks(1)[-c(1,length(axTicks(1)))], "") } else { lab <- axTicks(1) } axis(1, at = axTicks(1), labels = lab, lwd = axiscex) } for (j in length(methods):1) { data <- switch(j, simulation.res.PEMidr, simulation.res.PEM, simulation.res.LBFGSB, simulation.res.LBFGS, simulation.res.SANN, simulation.res.NM) not.failed <- sapply(data, function(x) is.null(x[["error"]])) pars <- simplify2array(lapply(data, "[[", "par")[not.failed]) error.messages[[j]] <- sapply(data[!not.failed], function(x) x$error$message) warning.messages[[j]] <- Get(data,"warning") simulation.ites[[j]] <- n.ites <- Get(data, "ite") acc <- formatForFig(Get(data, "acc")) tim <- round(sum(Get(data, "time"), na.rm = TRUE) / 60) war <- length(Get(data,"warning"))/2 err <- sum(!not.failed) if (i <= 4) { y <- pars[i, ] x <- rep(j, length(y)) points(y, x + runif(length(x), -1, 1)*0.18, #x + rnorm(length(x), sd = 0.1), cex = 0.55, pch = 21, bg = paste(cols[j], "40", sep = ""), col = "#00000060") segments(median(y, na.rm = TRUE), y0 = j-0.3, y1 = j+0.3, lwd = 2) } else { if (i == 6) segments(n.ites, y0 = j-0.3, y1 = j+0.3, col = paste(cols[j], "80", sep = "")) segments(median(n.ites, na.rm = TRUE), y0 = j-0.4, y1 = j+0.4, lwd = 2) if (j == 5) text(j, 1000, "(3000)") if (i == 5) { labels <- c("Accuracy", "Time", "Warnings", "Errors") at <- seq(0.15,0.9,l = length(labels)) axis(3, at = at, las = 2, labels = labels, tick = FALSE, hadj = 0.5, lwd = axiscex) axis(1, at = at, las = 2, labels = labels, tick = FALSE, hadj = 0.5, lwd = axiscex) text(at, j, c(acc, tim, war, err), cex = 0.8) } } } } } dev.off() # # Extract the number of times the maximum number interations was hit # simulation.max.ite.hit <- sapply(simulation.ites, function(x) sum(x %in% (simulation.max.ite+c(0,1)))) #print(simulation.max.ite.hit) # Check errors and warnings lapply(error.messages, function(x) table(if (length(x) == 0) ("Non") else (x))) lapply(warning.messages, function(x) table(if (length(x) == 0) ("Non") else (unlist(x[1, ])))) ################################################################################ # The following performs the reproducibility analysis of u133VsExon # ranked data using GMCM # The results appear in section 5.1. Reproducibility of microarray results ################################################################################ # Load ranked data from GMCM package data(u133VsExon) # The object is named u133VsExon # Rename the data and Benjamini-Hochberg adjust the p-values p.vals <- u133VsExon adj.p.vals <- data.frame(u133 = p.adjust(p.vals$u133, method = "BH"), exon = p.adjust(p.vals$exon, method = "BH")) # Ranking and scaling using Uhat u <- Uhat(1 - p.vals) # Which is the same as Uhat(-log(p.vals)) # Define a list of three different intial parameters init.par <- list(c(0.5, 1, 1, 0.5), c(0.999, 5, 1, 0.5), c(0.5, 1, 5, 0.999)) # Fitting GMCMs for each of the initial parameters # We only do the computation if it is not present as and .RData object. if (!exists("bcell.ite") | recompute) { log.lik <- -Inf for (i in 1:length(init.par)) { tmp.bcell.ite <- fit.meta.GMCM(u = u, init.par = init.par[[i]], method = "NM", trace.theta = TRUE) if (tmp.bcell.ite[[2]]$value > log.lik) { cat(i, "\n\n"); bcell.ite <- tmp.bcell.ite } } resave(bcell.ite, file = "cache.RData") } # Extract the parameters and number of iterations bcell.par <- bcell.ite[[1]] bcell.n.ite <- unname(bcell.ite[[2]]$counts[1]) # Extractng the idr and IDR values bcell.res <- get.IDR(x = u, par = bcell.par) # Get marginally significant genes exon.sig <- adj.p.vals$exon <= 0.05 u133.sig <- adj.p.vals$u133 <= 0.05 # Plotting the results and creating Figure 5 jpeg("Figure5.jpg", height = 7*0.5, width = 3*7*0.5, units = "in", res = 100) { bcell.cols <- c("grey", "steelblue")#, "black") par(mgp = c(2.3,0.8,0), oma = c(0,0,0,0)+0.1, mar = c(3, 3.3, 2, 0.1), xaxs = "i", yaxs = "i", #mfrow = c(1,2), xpd = TRUE) layout(rbind(c(3,1,1,2,2,3))) # Determining colouring col.num <- (bcell.res$IDR <= 0.05) + 1 labs <- pretty(seq(0,1)) plot(u, main = "Ranked values",#"GC cells vs B-cells\nGMCM process", cex = 0.4, pch = 16, axes = FALSE, xlab = "", ylab = "", col = bcell.cols[col.num]) mtext(expression(hat(z)[list(g, scriptstyle(U133))]), 1, line = 2, cex = 0.7) mtext(expression(hat(z)[list(g, scriptstyle(Exon))]), 2, line = 2, cex = 0.7) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("A", line = 0.9, adj = -0.05, cex = 1, font = 2) plot(GMCM:::qgmm.marginal(u = u, theta = meta2full(bcell.par, d = 2)), main = "Pseudo observations",#"GC cells vs B-cells\nEstimated GMM process", cex = 0.3, pch = 16, axes = FALSE, xlab = "", ylab = "", col = bcell.cols[col.num]) mtext(expression(hat(z)[list(g, scriptstyle(U133))]), 1, line = 2, cex = 0.7) mtext(expression(hat(z)[list(g, scriptstyle(Exon))]), 2, line = 2, cex = 0.7) axis(1, lwd = axiscex) axis(2, lwd = axiscex) legend("topleft", pch = c(16, 16), col = bcell.cols, text.font = 2, legend = paste(c("Irreproducible genes\nn =", "Reproducible genes\nn ="), table(bcell.res$Khat)), bty = "n", inset = 0.01, y.intersp = 2) par <- round(bcell.par,2) A <- bquote(alpha[1] == .(par[1])) B <- bquote(mu == .(par[2])) C <- bquote(sigma == .(par[3])) D <- bquote(rho == .(par[4])) legend("bottomright", bty = "n", inset = 0.01, y.intersp = 1, legend = c(A, B, C, D, expression())) mtext("B", line = 0.9, adj = -0.05, cex = 1, font = 2) } dev.off() ################################################################################ # The following performs the image segmentation in # in section 5.3. Image segmentation using the general GMCM ################################################################################ # Define the number of colours to segment the data into n.cols <- 10 fig7.file <- "./Figure7.jpg" # Download the STS-27 atlantis take off (public domain) # https://commons.wikimedia.org/wiki/File:Atlantis_taking_off_on_STS-27.jpg if (!file.exists(fig7.file)) { url <- "https://user-images.githubusercontent.com/6087024/52737968-e5b29d00-2fcd-11e9-8fc5-90bda78e9ff5.jpg" download.file(url, destfile = fig7.file, mode = "wb") } # Read the image pic <- readJPEG(fig7.file) nn <- dim(pic)[1] mm <- dim(pic)[2] seg.gmcm <- seg.km <- pic # To hold the different segmented pics # Format the picture in a matrix with 3 columns pic.rgbmat <- cbind(red = c(pic[,,1]), green = c(pic[,,2]), blue = c(pic[,,3])) # # Segmentation using GMCM # gmcm.file <- gsub(".jpg$", "_gmcm.RData", fig7.file) # Approximate runtime: 50 minutes if (!exists("seg.res.gmcm") | recompute) { best.loglik <- -Inf for (i in 1:10) { cat("i =", i, "\n"); flush.console() # Set a seed set.seed(i) # Choose starting parameters start.theta <- choose.theta(pic.rgbmat, m = n.cols, iter.max = 10) # Fit the full GMCM seg.res.gmcm <- fit.full.GMCM(u = pic.rgbmat, theta = start.theta, method = "PEM", max.ite = 100, verbose = TRUE, eps = 1e-4, convergence.criterion = "GMCM") # Compute the log likelihood of the maximizing parameters loglik <- GMCM:::dgmcm.loglik(seg.res.gmcm, u = pic.rgbmat) # Update if a better estiamte is found if (best.loglik < loglik) { cat("Loglik updated (", loglik, ")\n", sep = ""); flush.console() best.i <- i best.loglik <- loglik best.seg.res.gmcm <- seg.res.gmcm } } # Save results seg.res.gmcm <- best.seg.res.gmcm resave(seg.res.gmcm, file = "cache.RData") } class(seg.res.gmcm) <- "theta" # HOTFIX # Get the most likely component gmcm.class <- apply(get.prob(pic.rgbmat, theta = seg.res.gmcm), 1, which.max) # Extracting the colour for the estimated component mus <- do.call(rbind, seg.res.gmcm$mu) ranked.rgb.cols <- GMCM:::pgmm.marginal(mus, seg.res.gmcm) rgb.cols <- sapply(1:3, function(i) quantile(x = pic.rgbmat[,i], prob = ranked.rgb.cols[,i], type = 1)) # Arrange into 3 dimensional array gmcm.rgbmat <- rgb.cols[gmcm.class, ] seg.gmcm[,,1] <- matrix(gmcm.rgbmat[,1], nn, mm) seg.gmcm[,,2] <- matrix(gmcm.rgbmat[,2], nn, mm) seg.gmcm[,,3] <- matrix(gmcm.rgbmat[,3], nn, mm) # # Segmentation using K-means clustering # km.file <- gsub(".jpg$", "_km.RData", fig7.file) if (!exists("seg.res.km") | recompute) { system.time( seg.res.km <- kmeans(x = pic.rgbmat, centers = n.cols, iter.max = 100) ) resave(seg.res.km, file = "cache.RData") } km.rgbmat <- seg.res.km$centers[seg.res.km$cluster, ] seg.km[,,1] <- matrix(km.rgbmat[,1], nn, mm) seg.km[,,2] <- matrix(km.rgbmat[,2], nn, mm) seg.km[,,3] <- matrix(km.rgbmat[,3], nn, mm) # # Create segmented pictures # writeJPEG(seg.gmcm, target = gsub(".RData$", ".jpg", gmcm.file), quality = 0.8) writeJPEG(seg.km, target = gsub(".RData$", ".jpg", km.file), quality = 0.8) ################################################################################ # The following performs the Fresh vs Frozen reproducibility analysis # in section 5.2. Effects of cryopreservation on reproducibility ################################################################################ set.seed(1) # Load ranked data from GMCM package data(freshVsFrozen) # The object is named freshVsFrozen freshfroz.tstat <- freshVsFrozen[, c(1, 3)] freshVsFrozen$Fresh.adj.pval <- p.adjust(freshVsFrozen$PreVsPost.Fresh.pval, method="BH") freshVsFrozen$Frozen.adj.pval <- p.adjust(freshVsFrozen$PreVsPost.Frozen.pval, method="BH") freshfroz.pval <- freshVsFrozen[, c(2, 4)] freshVsFrozen$adj.FreshVsFrozen.pval <- p.adjust(freshVsFrozen$FreshVsFrozen.pval, method = "BH") # Absolute t-score and ranking freshfroz <- Uhat(abs(freshfroz.tstat)) freshfroz.n.fits <- 40 if (!exists("best.par.freshfroz") | recompute) { best.ll <- -Inf best.par <- NULL best.init.par <- NULL for (i in 1:freshfroz.n.fits) { init.par <- c(runif(1, 0.05, 0.95), rchisq(2, df = 1), runif(1, 0.05, 0.95)) # Fit model gmcm.par <- fit.meta.GMCM(u = freshfroz, init.par = init.par, method = "NM", max.ite = 1000, reltol = 1e-5, verbose = FALSE) # Compute loglikelihood ll <- GMCM:::dgmcm.loglik(u = freshfroz, theta = meta2full(gmcm.par, d = 2)) cat("Fit", i, "done.\tll =", sprintf("%.5f", ll), "\tbest.ll =", sprintf("%.5f", best.ll)); flush.console() if (ll > best.ll) { best.ll <- ll best.par <- gmcm.par best.init.par <- init.par cat("\t(best.ll updated!)"); flush.console() } cat("\n") } best.par.freshfroz <- best.par resave(best.par.freshfroz, file = "cache.RData") } # Get idr values freshfroz.idr <- get.IDR(x = freshfroz, par = best.par.freshfroz) freshfroz.group <- (freshfroz.idr$idr < 0.5) + (freshfroz.idr$IDR < 0.05) + 1 # Tests for dependency between significane of FreshVsFrozen compared to # idr suppressWarnings({ freshfroz.ctest <- cor.test(freshfroz.idr$idr, freshVsFrozen$FreshVsFrozen.pval, method = "spearman") }) freshfroz.table <- table(irreproducible = freshfroz.group == 1, sig.diff = freshVsFrozen$adj.FreshVsFrozen.pval <= 0.05) freshfroz.htest <- fisher.test(freshfroz.table) # # Overlap with differentially expressed genes across Fresh and Frozen # # Plotting and reporting is.sig <- freshVsFrozen$adj.FreshVsFrozen.pval <= 0.05 ng <- c(table(freshfroz.group), sum(is.sig)) legend <- paste0(c("Irreproducible\nn = ", "Reproducible\nn = ", "Highly reproducible\nn = ", "Adj. p-value < 0.05\n(Fresh vs Frozen)\nn = "), ng) jpeg("Figure6.jpg", height = 7*0.5, width = 3*7*0.5, units = "in", res = 100) { freshfroz.cols <- c("grey", "steelblue", "black", "red") freshfroz.cols2 <- freshfroz.cols[ifelse(is.sig, 4, freshfroz.group)] par(mfrow = c(1, 3), mar = c(3, 3.3, 2, 0.1), oma = c(0.1, 0.1, 0.1, 0.1), mgp = c(2.1, 1, 0), xaxs = "i", yaxs = "i", xpd = TRUE) labs <- pretty(seq(0,1)) plot(1 - freshfroz.pval, #asp = 1, pch = 16, cex = 0.4, xlab = "", ylab = "", axes = FALSE, main = "1 - p-value", col = freshfroz.cols2) points(1 - freshfroz.pval[is.sig, ], pch = 15, cex = 0.6, col = freshfroz.cols2[is.sig]) mtext(side = 1, expression(1 - p[list(g, scriptstyle(fresh))]), line = 2, cex = 0.6) mtext(side = 2, expression(1 - p[list(g, scriptstyle(frozen))]), line = 2, cex = 0.6) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("A", line = 0.9, adj = -0.05, cex = 1, font = 2) plot(freshfroz, xlab = "", ylab = "", pch = 16, cex = 0.4, #asp = 1, axes = FALSE, main = "Ranked values", col = freshfroz.cols2, xpd = TRUE) points(freshfroz[is.sig, ], pch = 15, cex = 0.6, col = freshfroz.cols2[is.sig]) mtext(expression(hat(u)[list(g, scriptstyle(fresh))]), 1, line = 2, cex = 0.7, xpd = TRUE) mtext(expression(hat(u)[list(g, scriptstyle(frozen))]), 2, line = 2, cex = 0.7, xpd = TRUE) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("B", line = 0.9, adj = -0.05, cex = 1, font = 2) freshfroz.pseudo <- GMCM:::qgmm.marginal(u = freshfroz, theta = meta2full(best.par.freshfroz, d = 2)) plot(freshfroz.pseudo, xlab = "", ylab = "", pch = 16, cex = 0.4, #asp = 1, axes = FALSE, main = "Pseudo observations", col = freshfroz.cols2, xpd = TRUE) points(freshfroz.pseudo[is.sig, ], pch = 15, cex = 0.6, col = freshfroz.cols2[is.sig]) mtext(expression(hat(z)[list(g,scriptstyle(fresh))]), 1, line = 2, cex = 0.7,xpd = TRUE) mtext(expression(hat(z)[list(g,scriptstyle(frozen))]), 2, line = 2, cex = 0.7, xpd = TRUE) axis(1); axis(2) mtext("C", line = 0.9, adj = -0.05, cex = 1, font = 2) legend("topleft", pch = c(16,16,16), col = freshfroz.cols[-4], text.font = 2, pt.cex = rep(0.5,3)*2.5, inset = 0.01, legend = legend[-4], bg = "#FFFFFF00", bty = "n", y.intersp = 2) legend("bottomright", pch = 15, col = freshfroz.cols[4], text.font = 2, pt.cex = 0.6*2.5, inset = 0.01, legend = legend[4], bg = "#FFFFFF00", bty = "n", y.intersp = 2) } dev.off() ## ----start_example, echo = FALSE, eval = TRUE----------------------- library("GMCM") set.seed(100) n <- 10000 sim <- SimulateGMCMData(n = n, theta = rtheta(m = 3, d = 2)) ## ----start_example, echo = TRUE, eval = FALSE----------------------- # library("GMCM") # set.seed(100) # n <- 10000 # sim <- SimulateGMCMData(n = n, theta = rtheta(m = 3, d = 2)) ## ----make_simulation_example_png, results = 'hide', echo = FALSE---- jpeg("Figure2.jpg", width = 3*7*0.5, height = 7*0.5, units = "in", res = 100) { par(mar = c(3, 3.3, 2, 0.1), oma = c(0, 0, 0, 0) + .1, mgp = c(2.1, 1, 0), xaxs = "i", yaxs = "i", xpd = TRUE) layout(rbind(c(3,1,2,3)), widths = c(1/6, 1/3, 1/3, 1/6)) pchs <- c(1,3,4) eks.col <- c("orange", "black", "steelblue") labs <- pretty(seq(0,1)) # Panel A plot(sim$z, col = eks.col[sim$K], main = "Latent GMM process", axes = FALSE, xlab = "", ylab = "", cex = 0.9, pch = pchs[sim$K]) mtext(expression(z[1]), 1, line = 2, cex = 0.6) mtext(expression(z[2]), 2, line = 2, cex = 0.6) axis(1, lwd = axiscex) axis(2, lwd = axiscex) mtext("A", line = 0.9, adj = -0.05, cex = 1, font = 2) # Panel B plot(sim$u, col = eks.col[sim$K], main = "GMCM process", axes = FALSE, xlab = "", ylab = "", cex = 0.9, pch = pchs[sim$K]) mtext(expression(u[1]), 1, line = 2, cex = 0.6) mtext(expression(u[2]), 2, line = 2, cex = 0.6) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("B", line = 0.9, adj = -0.05, cex = 1, font = 2) } dev.off() ## ----run_example, results = 'hide', eval = FALSE-------------------- # ranked.data <- Uhat(sim$u) # start.theta <- choose.theta(ranked.data, m = 3) # mle.theta <- fit.full.GMCM(u = ranked.data, theta = start.theta, # method = "NM", max.ite = 10000, reltol = 1e-4) # kappa <- get.prob(ranked.data, theta = mle.theta) # Khat <- apply(kappa, 1, which.max) ## ----time_run_example, results = 'hide', echo = FALSE, warning=FALSE---- st <- proc.time() info <- capture.output({ ranked.data <- Uhat(sim$u) start.theta <- choose.theta(ranked.data, m = 3) mle.theta <- fit.full.GMCM(u = ranked.data, theta = start.theta, method = "NM", max.ite = 10000, reltol = 1e-4) kappa <- get.prob(ranked.data, theta = mle.theta) Khat <- apply(kappa, 1, which.max) }) elapsed <- round((proc.time() - st)[3], 1) nm.ite <- as.numeric(sub(" *([0-9]+) [a-z ]+", "\\1", info[length(info)])) ## ----simulation_example_results, results = 'hide', echo = FALSE----- fit <- mle.theta Khat.tmp <- rep(NA, length(Khat)) Khat.tmp[Khat==1] <- 1 Khat.tmp[Khat==2] <- 2 Khat.tmp[Khat==3] <- 3 Khat <- Khat.tmp # Plot the results jpeg("Figure3.jpg", width = 3*7*0.5, height = 7*0.5, units = "in", res = 100) { par(mfrow = c(1, 3), mar = c(3, 3.3, 2, 0.1), oma = c(0, 0, 0, 0) + 0.1, mgp = c(2.1, 1, 0), xaxs = "i", yaxs = "i", xpd = TRUE) labs <- pretty(seq(0,1)) plot(sim$u, col = eks.col[Khat], main = "Clustering", axes = FALSE, xlab = "", ylab = "", cex = 0.7, pch = pchs[Khat]) mtext(expression(u[1]), 1, line = 2, cex = 0.6) mtext(expression(u[2]), 2, line = 2, cex = 0.6) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("A", line = 0.9, adj = -0.05, cex = 1, font = 2) simfit <- SimulateGMCMData(n, theta = fit) plot(simfit$z, col = eks.col[simfit$K], main = "Model check 1", axes = FALSE, xlab = "", ylab = "", cex = 0.7, pch = pchs[simfit$K]) mtext(expression(z[1]), 1, line = 2, cex = 0.6) mtext(expression(z[2]), 2, line = 2, cex = 0.6) axis(1, lwd = axiscex) axis(2, lwd = axiscex) mtext("B", line = 0.9, adj = -0.05, cex = 1, font = 2) plot(simfit$u, col = eks.col[simfit$K], main = "Model check 2", axes = FALSE, xlab = "", ylab = "", cex = 0.7, pch = pchs[simfit$K]) mtext(expression(u[1]), 1, line = 2, cex = 0.6) mtext(expression(u[2]), 2, line = 2, cex = 0.6) axis(1, at = labs, lwd = axiscex) axis(2, at = labs, lwd = axiscex) mtext("C", line = 0.9, adj = -0.05, cex = 1, font = 2) } dev.off() ## ----confusion_table, results = 'asis', echo = FALSE---------------- confusion.tab <- table(K = sim$K, Khat) acc <- round(sum(diag(confusion.tab))/n,3)*100 km.tmp <- km <- kmeans(ranked.data, centers = 3)$cluster # Rename clusters to get correct colours and # make the confusion matrix easy to read km.tmp[km == 1] <- 2 km.tmp[km == 2] <- 3 km.tmp[km == 3] <- 1 km <- km.tmp confusion.tab.km <- table(K = sim$K, Khat = km) acc.km <- round(sum(apply(confusion.tab.km, 1, max))/n, 3)*100 latex(cbind(confusion.tab, confusion.tab.km), cgroup = c("$\\hat{H}$ (GMCM)", "$\\hat{H}$ ($k$-means)"), n.cgroup = c(3,3), rgroup = "$H$", n.rgroup = 3, title = "", file = "", label = "confusion.mat", caption.loc = "bottom", caption = "Confusion matrices of GMCM and $k$-means clustering results.") ## ----table_speed_res, tidy = FALSE, echo = FALSE, results='asis'---- # Formatting the results stored in the speed.res object speed.res <- cbind(Package = toupper(gsub("-pkg (PEM|NM)", "", rownames(speed.res))), Algorithm = gsub("(gmcm|idr)-pkg ", "", rownames(speed.res)), as.data.frame(speed.res, row.names = 1:nrow(speed.res))) speed.res <- as.data.frame(speed.res) speed.res$elapsed <- round(speed.res$elapsed, 2) speed.res$"Rel.\\ speed" <- round(speed.res$"Rel.\\ speed", 1) colnames(speed.res) <- # Some extra formatting of the table gsub("elapsed", "Runtime ($s$)", gsub("^it$", "Iterations ($n$)", colnames(speed.res))) speed.res[, c(4:7, 10)] <- round(speed.res[, c(4:7, 10)],3) latex(speed.res[,-c(1,3,4:7)][,c(1,3,2,4,5)], title = "$p$ / Package", file = "", caption.loc = "bottom", caption = paste("Runtime comparisons of the \\pkg{idr} and", "\\pkg{GMCM} packages with increasing number", "of observations $p$. The benchmarked", "optimization procedures are the pseudo EM algorithm ", "(PEM) and the Nelder-Mead (NM) method.", "The runtime is given in seconds.", "The last column shows the relative speed per", "iteration compared to the fastest procedure."), label = "speed.tab", rowname = paste("\\pkg{", gsub("IDR", "idr", speed.res$Package), "}"), rgroup = unique(format(speed.res$n.obs, scientific = FALSE, big.mark = ","))) ## ----table_equivalent_optima, results='asis',echo=FALSE------------- tab <- matrix("$\\cdot$", 3, 4) colnames(tab) <- c("\\alpha_1", "\\mu", "\\sigma", "\\rho") colnames(tab) <- paste("$", colnames(tab), "$", sep = "") #"\\approx$" rownames(tab) <- 1:3 tab[1,1] <- "$1$" tab[2,c(1,4)] <- c("$0$", "$0$") tab[3,-1] <- c("$0$", "$1$", "$0$") caption <- paste("Equivalent optima in pure noise. A dot ($\\cdot$) denotes", "an arbitrary value. The given values need only to be", "approximate.") latex(tab, title = "Situation", caption = caption, label = "BadEst", file = "", caption.loc = "bottom") ## ----freshfroz_group_pct, echo=FALSE, results='hide'---------------- tmp <- table(freshfroz.group) freshfroz.group.pct <- paste0("$", prettyN(tmp), "$ $(", 100*round(tmp/sum(tmp), 3), "\\%)$") freshfroz.group.pct2 <- paste0("$", prettyN(sum(tmp[2:3])), "$ $(", 100*round(sum(tmp[2:3])/sum(tmp), 3), "\\%)$") ## ----sessionInfo, echo=FALSE, results='asis'------------------------ toLatex(sessionInfo())