## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval= FALSE-------------------------------------------------------------- # githubURL <- "https://github.com/feiyoung/GFM/blob/main/vignettes_data/Brain76.Rdata?raw=true" # download.file(githubURL,"Brain76.Rdata",mode='wb') ## ----eval=FALSE--------------------------------------------------------------- # load("Brain76.Rdata") # XList <- list(X[,group==1], X[,group==2]) # types <- type # str(XList) ## ----eval=FALSE--------------------------------------------------------------- # # library("GFM") # #load("vignettes_data\\Brain76.Rdata") # #ls() # check the variables # set.seed(2023) # set a random seed for reproducibility. ## ----eval=FALSE--------------------------------------------------------------- # q <- 15 # system.time( # gfm1 <- gfm(XList, types, q= q, verbose = TRUE) # ) # # ## ----eval=FALSE--------------------------------------------------------------- # hH <- gfm1$hH # library(mclust) # set.seed(1) # gmm1 <- Mclust(hH, G=7) # ARI_gfm <- adjustedRandIndex(gmm1$classification, y) # ## ----eval=FALSE--------------------------------------------------------------- # fac <- Factorm(X, q=15) # hH_lfm <- fac$hH # set.seed(1) # gmm2 <- Mclust(hH_lfm, G=7) # ARI_lfm <- adjustedRandIndex(gmm2$classification, y) # ## ----eval=FALSE--------------------------------------------------------------- # library(ggplot2) # df1 <- data.frame(ARI= c(ARI_gfm,ARI_lfm), # Method =factor(c('GFM', "LFM"))) # ggplot(data=df1, aes(x=Method, y=ARI, fill=Method)) + geom_bar(position = "dodge", stat="identity",width = 0.5)