## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(FuzzySTs) ## ----Chunk_D-01--------------------------------------------------------------- # Simple example data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3, 3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4) adjusted.weight.SI(data, 7, 1, c(0.5,0.5)) ## ----Chunk_D-02--------------------------------------------------------------- # Calculation of a re-adjusted weight of the main-item 1 for the observation 9 data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3, 3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4) data <- as.data.frame(data) MI <- 2 # main-items SI1 <- 2 SI2 <- 2 SI <- c(SI1,SI2) # decomposition by sub-items b_j <- c(1/2,1/2) # weights of main-items b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2) # weights of sub-items by main-items PA11 <- c(1,2,3,4,5) # possible answers for the sub-item 1 of the main-item 1 PA12 <- c(1,2,3,4,5) # possible answers for the sub-item 2 of the main-item 1 PA21 <- c(1,2,3,4,5) # possible answers for the sub-item 1 of the main-item 2 PA22 <- c(1,2,3,4,5) # possible answers for the sub-item 2 of the main-item 2 # Fuzzification step # ------------------ MF111 <- TrapezoidalFuzzyNumber(0,2,2,7) MF112 <- TrapezoidalFuzzyNumber(2,7,7,15) MF113 <- TrapezoidalFuzzyNumber(7,15,15,23) MF114 <- TrapezoidalFuzzyNumber(15,23,23,28) MF115 <- TrapezoidalFuzzyNumber(23,28,28,30) MF11 <- GFUZZ(data, 1, 1, PA11, spec="Identical", breakpoints = 100) # ------------------ MF121 <- TrapezoidalFuzzyNumber(0,2,2,7) MF122 <- TrapezoidalFuzzyNumber(2,7,7,15) MF123 <- TrapezoidalFuzzyNumber(7,15,15,23) MF124 <- TrapezoidalFuzzyNumber(15,23,23,28) MF125 <- TrapezoidalFuzzyNumber(23,28,28,30) MF12 <- GFUZZ(data, 1, 2, PA12, spec="Identical", breakpoints = 100) # ------------------ MF211 <- TrapezoidalFuzzyNumber(0,2,2,7) MF212 <- TrapezoidalFuzzyNumber(2,7,7,15) MF213 <- TrapezoidalFuzzyNumber(7,15,15,23) MF214 <- TrapezoidalFuzzyNumber(15,23,23,28) MF215 <- TrapezoidalFuzzyNumber(23,28,28,30) MF21 <- GFUZZ(data, 2, 1, PA21, spec="Identical", breakpoints = 100) # ------------------ MF221 <- TrapezoidalFuzzyNumber(0,2,2,7) MF222 <- TrapezoidalFuzzyNumber(2,7,7,15) MF223 <- TrapezoidalFuzzyNumber(7,15,15,23) MF224 <- TrapezoidalFuzzyNumber(15,23,23,28) MF225 <- TrapezoidalFuzzyNumber(23,28,28,30) MF22 <- GFUZZ(data, 2, 2, PA22, spec="Identical", breakpoints = 100) # ------------------ range <- matrix(c(0,0,0,0,28,28,28,28), ncol=2) adjusted.weight.MI(data, 9, 1, b_j, b_jk, SI) ## ----Chunk_D-03--------------------------------------------------------------- # Calculation the individual evaluations of the following data set data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3, 3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4) data <- as.data.frame(data) MI <- 2 # main-items SI1 <- 2 SI2 <- 2 SI <- c(SI1,SI2) # decomposition by sub-items b_j <- c(1/2,1/2) # weights of main-items b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2) # weights of sub-items by main-items PA11 <- c(1,2,3,4,5) # possible answers for the sub-item 1 of the main-item 1 PA12 <- c(1,2,3,4,5) # possible answers for the sub-item 2 of the main-item 1 PA21 <- c(1,2,3,4,5) # possible answers for the sub-item 1 of the main-item 2 PA22 <- c(1,2,3,4,5) # possible answers for the sub-item 2 of the main-item 2 # Fuzzification step # ------------------ MF111 <- TrapezoidalFuzzyNumber(0,2,2,7) MF112 <- TrapezoidalFuzzyNumber(2,7,7,15) MF113 <- TrapezoidalFuzzyNumber(7,15,15,23) MF114 <- TrapezoidalFuzzyNumber(15,23,23,28) MF115 <- TrapezoidalFuzzyNumber(23,28,28,30) MF11 <- GFUZZ(data, 1, 1, PA11, spec="Identical", breakpoints = 100) # ------------------ MF121 <- TrapezoidalFuzzyNumber(0,2,2,7) MF122 <- TrapezoidalFuzzyNumber(2,7,7,15) MF123 <- TrapezoidalFuzzyNumber(7,15,15,23) MF124 <- TrapezoidalFuzzyNumber(15,23,23,28) MF125 <- TrapezoidalFuzzyNumber(23,28,28,30) MF12 <- GFUZZ(data, 1, 2, PA12, spec="Identical", breakpoints = 100) # ------------------ MF211 <- TrapezoidalFuzzyNumber(0,2,2,7) MF212 <- TrapezoidalFuzzyNumber(2,7,7,15) MF213 <- TrapezoidalFuzzyNumber(7,15,15,23) MF214 <- TrapezoidalFuzzyNumber(15,23,23,28) MF215 <- TrapezoidalFuzzyNumber(23,28,28,30) MF21 <- GFUZZ(data, 2, 1, PA21, spec="Identical", breakpoints = 100) # ------------------ MF221 <- TrapezoidalFuzzyNumber(0,2,2,7) MF222 <- TrapezoidalFuzzyNumber(2,7,7,15) MF223 <- TrapezoidalFuzzyNumber(7,15,15,23) MF224 <- TrapezoidalFuzzyNumber(15,23,23,28) MF225 <- TrapezoidalFuzzyNumber(23,28,28,30) MF22 <- GFUZZ(data, 2, 2, PA22, spec="Identical", breakpoints = 100) # ------------------ range <- matrix(c(0,0,0,0,28,28,28,28), ncol=2) ind.eval <- IND.EVAL(data,MI,b_j,SI,b_jk, range = range, distance.type ="DSGD.G") head(ind.eval) ## ----Chunk_D-04--------------------------------------------------------------- # Calculation of the global evaluation of the following data set data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3, 3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4) data <- as.data.frame(data) MI <- 2 # main-items SI1 <- 2 SI2 <- 2 SI <- c(SI1,SI2) # decomposition by sub-items b_j <- c(1/2,1/2) # weights of main-items b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2) # weights of sub-items by main-items PA11 <- c(1,2,3,4,5) # possible answers for the sub-item 1 of the main-item 1 PA12 <- c(1,2,3,4,5) # possible answers for the sub-item 2 of the main-item 1 PA21 <- c(1,2,3,4,5) # possible answers for the sub-item 1 of the main-item 2 PA22 <- c(1,2,3,4,5) # possible answers for the sub-item 2 of the main-item 2 # Fuzzification step # ------------------ MF111 <- TrapezoidalFuzzyNumber(0,2,2,7) MF112 <- TrapezoidalFuzzyNumber(2,7,7,15) MF113 <- TrapezoidalFuzzyNumber(7,15,15,23) MF114 <- TrapezoidalFuzzyNumber(15,23,23,28) MF115 <- TrapezoidalFuzzyNumber(23,28,28,30) MF11 <- GFUZZ(data, 1, 1, PA11, spec="Identical", breakpoints = 100) # ------------------ MF121 <- TrapezoidalFuzzyNumber(0,2,2,7) MF122 <- TrapezoidalFuzzyNumber(2,7,7,15) MF123 <- TrapezoidalFuzzyNumber(7,15,15,23) MF124 <- TrapezoidalFuzzyNumber(15,23,23,28) MF125 <- TrapezoidalFuzzyNumber(23,28,28,30) MF12 <- GFUZZ(data, 1, 2, PA12, spec="Identical", breakpoints = 100) # ------------------ MF211 <- TrapezoidalFuzzyNumber(0,2,2,7) MF212 <- TrapezoidalFuzzyNumber(2,7,7,15) MF213 <- TrapezoidalFuzzyNumber(7,15,15,23) MF214 <- TrapezoidalFuzzyNumber(15,23,23,28) MF215 <- TrapezoidalFuzzyNumber(23,28,28,30) MF21 <- GFUZZ(data, 2, 1, PA21, spec="Identical", breakpoints = 100) # ------------------ MF221 <- TrapezoidalFuzzyNumber(0,2,2,7) MF222 <- TrapezoidalFuzzyNumber(2,7,7,15) MF223 <- TrapezoidalFuzzyNumber(7,15,15,23) MF224 <- TrapezoidalFuzzyNumber(15,23,23,28) MF225 <- TrapezoidalFuzzyNumber(23,28,28,30) MF22 <- GFUZZ(data, 2, 2, PA22, spec="Identical", breakpoints = 100) # ------------------ range <- matrix(c(0,0,0,0,28,28,28,28), ncol=2) ind.eval <- IND.EVAL(data,MI,b_j,SI,b_jk, range = range, distance.type ="DSGD.G") (GLOB <- GLOB.EVAL(data, MI, b_j, SI, b_jk, distance.type ="GSGD")) (GLOB.mean <- GLOB.EVAL.mean(ind.eval)) ## ----Chunk_D-05--------------------------------------------------------------- # Calculation of the indicator of information's rate - complete data set data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3, 3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4) data <- as.data.frame(data) p_ind <- c(0.1,0.05,0.05,0.2,0.1,0.05,0.1,0.1,0.2,0.05) # Observations' weights SI1 <- 2 SI2 <- 2 SI <- c(SI1,SI2) b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2) R(data, p_ind, b_jk, SI) ## ----Chunk_D-06--------------------------------------------------------------- # Calculation of the indicator of information's rate for the unit 7 data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3, 3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4) data <- as.data.frame(data) SI1 <- 2 SI2 <- 2 SI <- c(SI1,SI2) b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2) Ri(data, 7, b_jk, SI)