## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(FuzzySTs) ## ----Chunk_C-01--------------------------------------------------------------- # Calculation of the 95%-quantile eta of the bootstrapped distribution mat <- matrix(c(1,2,2,2,2,1),ncol=1) MF111 <- TrapezoidalFuzzyNumber(0,1,1,2) MF112 <- TrapezoidalFuzzyNumber(1,2,2,3) PA11 <- c(1,2) data.fuzzified <- FUZZ(mat,mi=1,si=1,PA=PA11) emp.dist <- boot.mean.ml(data.fuzzified, algorithm = "algo1", distribution = "normal", sig = 0.05, nsim = 5, sigma = 1) (eta.boot <- quantile(emp.dist, probs = 95/100)) ## ----Chunk_C-02--------------------------------------------------------------- # Calculation of the 95% fuzzy confidence interval by the likelihood method # and using the bootstrap technique data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1) MF111 <- TrapezoidalFuzzyNumber(0,1,1,2) MF112 <- TrapezoidalFuzzyNumber(1,2,2,3) MF113 <- TrapezoidalFuzzyNumber(2,3,3,4) PA11 <- c(1,2,3) data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11) Fmean <- Fuzzy.sample.mean(data.fuzzified) emp.dist <- boot.mean.ml(data.fuzzified, algorithm = "algo1", distribution = "normal", sig = 0.05, nsim = 5, sigma = 0.79) coef.boot <- quantile(emp.dist, probs = 95/100) head(fci.ml.boot(data.fuzzified, t = Fmean, distribution = "normal", sig= 0.05, sigma = 0.62, coef.boot = coef.boot)) ## ----Chunk_C-03--------------------------------------------------------------- # Calculation of fuzzy decisions using the function Fuzzy.decisions H0 <- alphacut(TriangularFuzzyNumber(2.9,3,3.1), seq(0,1, 0.01)) H1 <- alphacut(TriangularFuzzyNumber(3,3,5), seq(0,1,0.01)) t <- alphacut(TriangularFuzzyNumber(0.8,1.80,2.80), seq(0,1,0.01)) res <- Fuzzy.decisions(type = 0, H0, H1, t = t, s.d = 0.79, n = 10, sig = 0.05, distribution = "normal", distance.type = "GSGD") res$RH0 res$DRH0 res$D.RH0 res$D.DRH0 # Calculation of fuzzy decisions using the function Fuzzy.decisions.ML data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1) MF111 <- TrapezoidalFuzzyNumber(0,1,1,2) MF112 <- TrapezoidalFuzzyNumber(1,2,2,3) MF113 <- TrapezoidalFuzzyNumber(2,3,3,4) PA11 <- c(1,2,3) data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11) H0 <- alphacut(TriangularFuzzyNumber(2.9,3,3.1), seq(0,1, 0.01)) H1 <- alphacut(TriangularFuzzyNumber(3,3,5), seq(0,1,0.01)) t <- alphacut(TriangularFuzzyNumber(0.8,1.80,2.80), seq(0,1,0.01)) emp.dist <- boot.mean.ml(data.fuzzified, algorithm = "algo1", distribution = "normal", sig = 0.05, nsim = 5, sigma = 0.79) coef.boot <- quantile(emp.dist, probs = 95/100) res <- Fuzzy.decisions.ML(data.fuzzified, H0, H1, t = t, coef.boot = coef.boot, sigma = 0.79, sig = 0.05, distribution = "normal", distance.type = "GSGD") res$RH0 res$DRH0 res$D.RH0 res$D.DRH0 ## ----Chunk_C-04--------------------------------------------------------------- # Calculation of a a fuzzy hypotheses test by the traditional fuzzy confidence interval H0 <- TriangularFuzzyNumber(2.9,3,3.1) H1 <- TriangularFuzzyNumber(3,3,5) res <- Fuzzy.CI.test(type = 0, H0, H1, t = TriangularFuzzyNumber(0.8,1.80,2.80), s.d = 0.79, n = 10, sig = 0.05, distribution = "normal", distance.type="GSGD") res$decision res$RH0 res$DRH0 res$D.RH0 res$D.DRH0 ## ----Chunk_C-05--------------------------------------------------------------- # Calculation of a fuzzy hypotheses test by the fuzzy confidence interval # using the likelihood method and the bootstrap technique data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1) MF111 <- TrapezoidalFuzzyNumber(0,1,1,2) MF112 <- TrapezoidalFuzzyNumber(1,2,2,3) MF113 <- TrapezoidalFuzzyNumber(2,3,3,4) PA11 <- c(1,2,3) data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11) Fmean <- Fuzzy.sample.mean(data.fuzzified) H0 <- TriangularFuzzyNumber(2.2,2.5,3) H1 <- TriangularFuzzyNumber(2.5,2.5,5) emp.dist <- boot.mean.ml(data.fuzzified, algorithm = "algo1", distribution = "normal", sig= 0.05, nsim = 5, sigma = 0.7888) coef.boot <- quantile(emp.dist, probs = 95/100) res <- Fuzzy.CI.ML.test(data.fuzzified, H0, H1, t = Fmean, sigma=0.7888, coef.boot = coef.boot, sig=0.05, distribution="normal", distance.type="GSGD") res$RH0 res$DRH0 res$decision ## ----Chunk_C-06--------------------------------------------------------------- # Calculation of a fuzzy p-value of a fuzzy hypotheses test H0 <- TriangularFuzzyNumber(2.2,2.5,3) H1 <- TriangularFuzzyNumber(2.5,2.5,5) Fuzzy.p.value(type=1, H0, H1, t=TriangularFuzzyNumber(0.8,1.8,2.8), s.d=0.7888, n=10, sig=0.05, distribution="normal", distance.type="GSGD")