--- title: "Introduction to 'EpiSimR'" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to 'EpiSimR'} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ``` # Overview 'EpiSimR' is an R package providing an interactive **Shiny** application for simulating the spread of **epidemic and endemic diseases** using **deterministic compartmental mathematical models**. The application allows users to: - Select different epidemiological models (**SIR, SEIR**). - Consider key factors such as **immunity, demographic changes, vaccination, and isolation strategies**. - Adjust model parameters dynamically (e.g., **basic reproduction number R₀, infectious period, vaccination coverage**). - Visualize the impact of interventions through **real-time interactive plots**. This tool is designed for **researchers, public health professionals, and students** who wish to explore the dynamics of infectious diseases and assess intervention strategies. # Installation To install and load 'EpiSimR', use: ```{r} # Install from CRAN install.packages("EpiSimR") # Load the package library(EpiSimR) ``` # Launching the Application To start the **interactive Shiny app**, run: ```{r} run_app() ``` # Features ## 1. Model Selection & Customization - **SIR vs. SEIR models**: Choose between the classic **Susceptible-Infected-Recovered (SIR)** or **Susceptible-Exposed-Infected-Recovered (SEIR)** model. - **Immunity options**: Decide whether recovered individuals gain **permanent or temporary immunity**. - **Demographic changes**: Option to include **birth and mortality rates** in the model. - **Public health interventions**: Assess the impact of **vaccination and isolation strategies**. ## 2. Adjustable Parameters - **Basic reproduction number (R₀)**. - **Birth and mortality rates**. - **Infectious period**. - **Latent period** (for SEIR models). - **Duration of immunity**. - **Vaccination coverage**. - **Isolation rate**. ## 3. Simulation & Visualization - **Real-time simulation**: Run simulations dynamically as parameters are adjusted. - **Graphical visualization**: Generate plots showing disease dynamics over time. - **Comparative analysis**: Assess the effectiveness of different control measures. ## 4. User-Friendly Interface - **Interactive UI** built with the **Shiny** package. - **Dynamic updates** based on user input. - **Export options** for simulation results. # Example Use Case Imagine a scenario where a new infectious disease emerges. Public health officials want to evaluate whether **vaccination or isolation measures** can help control the outbreak. Using **EpiSimR**, they can: 1. Select an **SEIR model** to account for an incubation period. 2. Set an initial **R₀** of 3.0 (high transmission potential). 3. Introduce a **vaccination strategy** covering 60% of the population. 4. Observe the resulting **reduction in peak infection levels**. # References For more details on deterministic compartmental models, see: - **Brauer, F. (2008).** *Compartmental Models in Epidemiology*. In: F. Brauer, P. van den Driessche, & J. Wu (Eds.), *Mathematical Epidemiology*. Springer. . - **Keeling, M. J., & Rohani, P. (2008).** *Modeling Infectious Diseases in Humans and Animals*. Princeton University Press. ------------------------------------------------------------------------ ### Citation If you use 'EpiSimR' in your research, please cite it as follows: ``` r citation("EpiSimR") ``` ------------------------------------------------------------------------ This vignette provides an introduction to using 'EpiSimR' for epidemic simulations. For further details, refer to the package documentation and function help pages (e.g., `?run_app`).