Parameter Reference Guide

E2E Package Parameter Reference Guide

This guide provides comprehensive parameter documentation for all E2E functions.

Built-in Datasets

E2E includes example datasets for both diagnostic and prognostic modeling:

Diagnostic Datasets

  • train_dia: Training data with sample IDs (column 1), outcomes 0/1 (column 2), and features (columns 3+)
  • test_dia: Test data with the same structure

Prognostic Datasets

  • train_pro: Training data with sample IDs (column 1), survival status 0/1 (column 2), survival time (column 3), and features (columns 4+)
  • test_pro: Test data with the same structure

Built-in Models

Diagnostic Models (12 algorithms)

  • rf: Random Forest
  • xb: XGBoost
  • svm: Support Vector Machine
  • mlp: Multi-Layer Perceptron
  • lasso: L1-regularized Logistic Regression
  • en: Elastic Net
  • ridge: L2-regularized Logistic Regression
  • lda: Linear Discriminant Analysis
  • qda: Quadratic Discriminant Analysis
  • nb: Naive Bayes
  • dt: Decision Tree
  • gbm: Gradient Boosting Machine

Prognostic Models (6 algorithms)

  • lasso_pro: Lasso Cox Regression
  • en_pro: Elastic Net Cox Regression
  • ridge_pro: Ridge Cox Regression
  • stepcox_pro: Stepwise Cox Regression
  • gbm_pro: Gradient Boosting Machine
  • rsf_pro: Random Survival Forest

Diagnostic Modeling Functions

models_dia()

Trains base classification models for diagnostic tasks. Parameters:

bagging_dia()

Bootstrap aggregating ensemble method. Parameters:

voting_dia()

Voting ensemble combining multiple models. Parameters:

stacking_dia()

Stacking ensemble with meta-model. Parameters:

imbalance_dia()

Handles imbalanced datasets using EasyEnsemble-like algorithm. Parameters:

apply_dia()

Applies trained model to new data. Parameters:

evaluate_predictions_dia()

Evaluates model predictions. Parameters:

Prognostic Modeling Functions

models_pro()

Trains base survival models. Parameters:

stacking_pro()

Stacking ensemble for survival analysis. Parameters:

bagging_pro()

Bootstrap aggregating for survival analysis. Parameters:

apply_pro()

Applies trained survival model to new data. Parameters:

evaluate_predictions_pro()

Evaluates survival model predictions. Parameters:

Visualization Functions

figure_dia()

Creates diagnostic model evaluation plots. Parameters:

figure_pro()

Creates prognostic model evaluation plots. Parameters:

figure_shap()

Creates SHAP interpretation plots. Parameters:

Custom Model Registration

register_model_dia() / register_model_pro()

Registers custom algorithms.

Usage: 1. Define custom function following E2E conventions 2. Register with register_model_dia("model_name", custom_function) 3. Use registered model in E2E workflows