--- title: "Getting Started with CytoProfile" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting Started with CytoProfile} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", out.width = "100%", fig.keep = "none", fig.show = "hide" ) ``` # CytoProfile The goal of CytoProfile is to conduct quality control using biological meaningful cutoff on raw measured values of cytokines. Specifically, test on distributional symmetry to suggest the adopt of transformation. Conduct exploratory analysis including summary statistics, generate enriched barplots, and boxplots. Further, conduct univariate analysis and multivariate analysis for advance analysis. ## Installation Before installation of the CytoProfile package, make sure to install BiocManager and mix0mics packages using: ```r ## install BiocManager if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") ## install mixOmics BiocManager::install('mixOmics') ``` You can install the development version of CytoProfile from [GitHub](https://github.com/saraswatsh/CytoProfile) with: ``` r # install.packages("devtools") devtools::install_github("saraswatsh/CytoProfile") ``` Install CytoProfile from CRAN with: ``` r install.packages("CytoProfile") ``` ## Example Below are examples of using the functions provided in CytoProfile. Any saved or generated files that are PDF or PNG format will be found at in the [Output Folder](https://github.com/saraswatsh/CytoProfile/tree/main/output). ## 1. Data Loading and set up ```{r, setup, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Loading all packages required # Data manipulation and reshaping library(dplyr) # For data filtering, grouping, and summarising. library(tidyr) # For reshaping data (e.g., pivot_longer, pivot_wider). # Plotting and visualization library(ggplot2) # For creating all the ggplot-based visualizations. library(gridExtra) # For arranging multiple plots on a single page. library(ggrepel) # For improved label placement in plots (e.g., volcano plots). library(gplots) # For heatmap.2, which is used to generate heatmaps. library(plot3D) # For creating 3D scatter plots in PCA and sPLS-DA analyses. library(reshape2) # For data transformation (e.g., melt) in cross-validation plots. # Statistical analysis library(mixOmics) # For multivariate analyses (PCA, sPLS-DA, etc.). library(e1071) # For computing skewness and kurtosis. library(pROC) # For ROC curve generation in machine learning model evaluation. # Machine learning library(xgboost) # For building XGBoost classification models. library(randomForest) # For building Random Forest classification models. library(caret) # For cross-validation and other machine learning utilities. # Package development and document rendering library(knitr) # For knitting RMarkdown files and setting chunk options. library(devtools) # For installing the development version of the package from GitHub. # Load in the CytoProfile package library(CytoProfile) # Loading in data data("ExampleData1") data_df <- ExampleData1 # Creating a temporary directory to store output files path <- tempdir(check = TRUE) ``` ## 2. Exploratory Data Analysis ### Boxplots ```{r, EDA 1, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Generating boxplots to check for outliers for raw values cyt_bp(data_df[, -c(1:3)], pdf_title = file.path(path, "boxplot_by_cytokine_raw.pdf")) # Removing the first 3 columns to retain only continuous variables. # Generating boxplots to check for outliers for log2 values cyt_bp(data_df[, -c(1:3)], pdf_title = file.path(path, "boxplot_by_cytokine_log2.pdf"), scale = "log2") ``` ### Group-Specific Boxplots ```{r, EDA 2, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Raw values for group-specific boxplots cyt_bp2(data_df[, -c(3)], pdf_title = file.path(path, "boxplot_by_group_and_treatment_raw.pdf"), scale = NULL) # Log2-transformed group-specific boxplots cyt_bp2(data_df[, -c(3)], pdf_title = file.path(path, "boxplot_by_group_and_treatment_log2.pdf"), scale = "log2") ``` ## 3. Skewness and Kurtosis ```{r, EDA 3, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Histogram for overall raw data cyt_skku(data_df[, -c(1:3)], pdf_title = file.path(path, "skew_and_kurtosis.pdf"), group_cols = NULL) # Histogram with grouping (e.g., "Group") cyt_skku(ExampleData1[, -c(2:3)], pdf_title = file.path(path, "skew_and_kurtosis_2.pdf"), group_cols = c("Group")) ``` ## 4. Error Bar Plots ### Basic Error Bar Plot ```{r,EDA 4, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} cytokine_mat <- ExampleData1[, -c(1:3)] cytokineNames <- colnames(cytokine_mat) nCytokine <- length(cytokineNames) results <- cyt_skku(ExampleData1[, -c(3)], print_res_log = TRUE, group_cols = c("Group", "Treatment")) pdf(file = file.path(path, "bar_error_plot.pdf")) oldpar <- par(no.readonly = TRUE) par(mfrow = c(2,2), mar = c(4, 4, 2, 1)) for (k in 1:nCytokine) { center_df <- data.frame(name = rownames(results[,,k]), results[,,k]) cyt_errbp(center_df, p_lab = FALSE, es_lab = FALSE, class_symbol = TRUE, y_lab = "Concentration in log2 scale", main = cytokineNames[k]) } par(oldpar) if (dev.cur() > 1) dev.off() ``` ### Enriched Error Bar Plot with p-values and Effect Sizes ```{r, EDA 5, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} data_df <- ExampleData1[, -c(3)] cyt_mat <- log2(data_df[, -c(1:2)]) data_df1 <- data.frame(data_df[, 1:2], cyt_mat) cytokineNames <- colnames(cyt_mat) nCytokine <- length(cytokineNames) condt <- !is.na(cyt_mat) & (cyt_mat > 0) Cutoff <- min(cyt_mat[condt], na.rm = TRUE) / 10 p_aov_mat <- matrix(NA, nrow = nCytokine, ncol = 3) dimnames(p_aov_mat) <- list(cytokineNames, c("Group", "Treatment", "Interaction")) p_groupComp_mat <- matrix(NA, nrow = nCytokine, ncol = 3) dimnames(p_groupComp_mat) <- list(cytokineNames, c("2-1", "3-1", "3-2")) ssmd_groupComp_stm_mat <- mD_groupComp_stm_mat <- p_groupComp_stm_mat <- p_groupComp_mat for (i in 1:nCytokine) { Cytokine <- (cyt_mat[, i] + Cutoff) cytokine_aov <- aov(Cytokine ~ Group * Treatment, data = data_df) aov_table <- summary(cytokine_aov)[[1]] p_aov_mat[i, ] <- aov_table[1:3, 5] p_groupComp_mat[i, ] <- TukeyHSD(cytokine_aov)$Group[1:3, 4] p_groupComp_stm_mat[i, ] <- TukeyHSD(cytokine_aov)$`Group:Treatment`[1:3, 4] mD_groupComp_stm_mat[i, ] <- TukeyHSD(cytokine_aov)$`Group:Treatment`[1:3, 1] ssmd_groupComp_stm_mat[i, ] <- mD_groupComp_stm_mat[i, ] / sqrt(2 * aov_table["Residuals", "Mean Sq"]) } results <- cyt_skku(ExampleData1[, -c(3)], print_res_log = TRUE, group_cols = c("Group", "Treatment")) pdf(file = file.path(path, "bar_error_plot_enriched.pdf")) oldpar <- par(no.readonly = TRUE) par(mfrow = c(2,2), mar = c(3, 3, 2, 1)) for (k in 1:nCytokine) { result_mat <- results[1:9, , k] center_df <- data.frame( name = rownames(result_mat), result_mat[, c("center", "spread")], p.value = c(1, p_groupComp_stm_mat[k, 1:2]), effect.size = c(0, ssmd_groupComp_stm_mat[k, 1:2]) ) cyt_errbp(center_df, p_lab = TRUE, es_lab = TRUE, class_symbol = TRUE, y_lab = "Concentration in log2 scale", main = cytokineNames[k]) } par(oldpar) if (dev.cur() > 1) dev.off() ``` ## 5. Univariate Analysis ### Two Sample T-test and Mann Whitney U Test ```{r, Univariate 1, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Performing Two Sample T-test and Mann Whitney U Test data_df <- ExampleData1[, -c(3)] data_df <- dplyr::filter(data_df, Group != "ND", Treatment != "Unstimulated") # Two sample T-test cyt_ttest(data_df[, c(1:2, 5:6)], scale = "log2", verbose = TRUE, format_output = TRUE) # Mann-Whitney U Test cyt_ttest(data_df[, c(1:2, 5:6)], verbose = TRUE) ``` ### ANOVA Comparisons Test ```{r,Univariate 2, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Perform ANOVA comparisons test (example with 2 cytokines) cyt_anova(data_df[, c(1:2, 5:6)], format_output = TRUE) ``` ## 6. Multivariate Analysis ### Partial Least Squares Discriminant Analysis (PLS-DA) ```{r, Multivariate 1, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # cyt.plsda function. data <- ExampleData1[, -c(3)] data_df <- dplyr::filter(data, Group != "ND" & Treatment == "CD3/CD28") cyt_splsda(data_df, pdf_title = file.path(path, "example_spls_da_analysis.pdf"), colors = c("black", "purple"), bg = FALSE, scale = "log2", ellipse = TRUE, conf_mat = FALSE, var_num = 25, cv_opt = "loocv", comp_num = 2, pch_values = c(16, 4), group_col = "Group", group_col2 = "Treatment", roc = TRUE) ``` ## 7. Principal Component Analysis (PCA) ```{r, Multivariate 2, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} data <- ExampleData1[, -c(3,23)] data_df <- dplyr::filter(data, Group != "ND" & Treatment != "Unstimulated") cyt_pca(data_df, pdf_title = file.path(path, "example_pca_analysis.pdf"), colors = c("black", "red2"), scale = "log2", comp_num = 3, pch_values = c(16, 4), style = "3D", group_col = "Group", group_col2 = "Treatment") cyt_pca(data_df, pdf_title = file.path(path, "example_pca_analysis_2.pdf"), colors = c("black", "red2"), scale = "log2", comp_num = 2, pch_values = c(16, 4), group_col = "Group") ``` ## 8. Volcano Plot ```{r, EDA 6, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Generating Volcano Plot data_df <- ExampleData1[, -c(2:3)] cyt_volc(data_df, group_col = "Group", cond1 = "T2D", cond2 = "ND", fold_change_thresh = 2.0, top_labels = 15) ``` ## 9. Heatmap ```{r,EDA 7, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE, fig.width=5, fig.height=4} # Generating Heat map cyt_heatmap(data = data_df, scale = "log2", # Optional scaling annotation_col_name = "Group", title = NULL) ``` ## 10. Dual Flashlight Plot ```{r,EDA 8, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Generating dual flashlights plot data_df <- ExampleData1[, -c(2:3)] dfp <- cyt_dualflashplot(data_df, group_var = "Group", group1 = "T2D", group2 = "ND", ssmd_thresh = -0.2, log2fc_thresh = 1, top_labels = 10) # Print the plot dfp # Print the table data used for plotting print(dfp$data) ``` ## 11. Machine Learning Models ### Using XGBoost for classification ```{r, ML1, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Using XGBoost for classification data_df0 <- ExampleData1 data_df <- data.frame(data_df0[, 1:3], log2(data_df0[, -c(1:3)])) data_df <- data_df[, -c(2:3)] data_df <- dplyr::filter(data_df, Group != "ND") cyt_xgb(data = data_df, group_col = "Group", nrounds = 500, max_depth = 4, eta = 0.05, nfold = 5, cv = TRUE, eval_metric = "mlogloss", early_stopping_rounds = NULL, top_n_features = 10, verbose = 0, plot_roc = TRUE, print_results = FALSE) ``` ### Using Random Forest for classification ```{r,ML2, echo=TRUE, warning=FALSE, message=FALSE, cache=TRUE} # Using Random Forest for classification cyt_rf(data = data_df, group_col = "Group", k_folds = 5, ntree = 1000, mtry = 4, run_rfcv = TRUE, plot_roc = TRUE, verbose = FALSE) ```