Title: | Cell Ranger Output Filtering and Metrics Visualization |
Version: | 0.3.2 |
Description: | Sample and cell filtering as well as visualisation of output metrics from 'Cell Ranger' by Grace X.Y. Zheng et al. (2017) <doi:10.1038/ncomms14049>. 'CRMetrics' allows for easy plotting of output metrics across multiple samples as well as comparative plots including statistical assessments of these. 'CRMetrics' allows for easy removal of ambient RNA using 'SoupX' by Matthew D Young and Sam Behjati (2020) <doi:10.1093/gigascience/giaa151> or 'CellBender' by Stephen J Fleming et al. (2022) <doi:10.1101/791699>. Furthermore, it is possible to preprocess data using 'Pagoda2' by Nikolas Barkas et al. (2021) https://github.com/kharchenkolab/pagoda2 or 'Seurat' by Yuhan Hao et al. (2021) <doi:10.1016/j.cell.2021.04.048> followed by embedding of cells using 'Conos' by Nikolas Barkas et al. (2019) <doi:10.1038/s41592-019-0466-z>. Finally, doublets can be detected using 'scrublet' by Samuel L. Wolock et al. (2019) <doi:10.1016/j.cels.2018.11.005> or 'DoubletDetection' by Gayoso et al. (2020) <doi:10.5281/zenodo.2678041>. In the end, cells are filtered based on user input for use in downstream applications. |
License: | GPL-3 |
Encoding: | UTF-8 |
Depends: | R (≥ 4.0.0) |
Imports: | cowplot, dplyr, ggbeeswarm, ggplot2, ggpmisc, ggpubr, ggrepel, magrittr, Matrix, methods, R6, scales, sccore, sparseMatrixStats, stats, tibble, tidyr, utils |
Suggests: | conos, data.table, markdown, pagoda2, reticulate, rhdf5, Seurat, SoupX, testthat (≥ 3.0.0) |
RoxygenNote: | 7.3.1 |
URL: | https://github.com/khodosevichlab/CRMetrics |
BugReports: | https://github.com/khodosevichlab/CRMetrics/issues |
Maintainer: | Rasmus Rydbirk <rrydbirk@outlook.dk> |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2024-11-07 19:24:09 UTC; ucloud |
Author: | Rasmus Rydbirk [aut, cre], Fabienne Kick [aut], Henrietta Holze [aut], Xian Xin [ctb] |
Repository: | CRAN |
Date/Publication: | 2024-11-08 00:20:06 UTC |
CRMetrics class object
Description
Functions to analyze Cell Ranger count data. To initialize a new object, 'data.path' or 'cms' is needed. 'metadata' is also recommended, but not required.
Public fields
metadata
data.frame or character Path to metadata file or name of metadata data.frame object. Metadata must contain a column named 'sample' containing sample names that must match folder names in 'data.path' (default = NULL)
data.path
character Path(s) to Cell Ranger count data, one directory per sample. If multiple paths, do c("path1","path2") (default = NULL)
cms
list List with count matrices (default = NULL)
cms.preprocessed
list List with preprocessed count matrices after $doPreprocessing() (default = NULL)
cms.raw
list List with raw, unfiltered count matrices, i.e., including all CBs detected also empty droplets (default = NULL)
summary.metrics
data.frame Summary metrics from Cell Ranger (default = NULL)
detailed.metrics
data.frame Detailed metrics, i.e., no. genes and UMIs per cell (default = NULL)
comp.group
character A group present in the metadata to compare the metrics by, can be added with addComparison (default = NULL)
verbose
logical Print messages or not (default = TRUE)
theme
ggplot2 theme (default: theme_bw())
pal
Plotting palette (default = NULL)
n.cores
numeric Number of cores for calculations (default = 1) Initialize a CRMetrics object
Methods
Public methods
Method new()
To initialize new object, 'data.path' or 'cms' is needed. 'metadata' is also recommended, but not required.
Usage
CRMetrics$new( data.path = NULL, metadata = NULL, cms = NULL, samples = NULL, unique.names = TRUE, sep.cells = "!!", comp.group = NULL, verbose = TRUE, theme = theme_bw(), n.cores = 1, sep.meta = ",", raw.meta = FALSE, pal = NULL )
Arguments
data.path
character Path to directory with Cell Ranger count data, one directory per sample (default = NULL).
metadata
data.frame or character Path to metadata file (comma-separated) or name of metadata dataframe object. Metadata must contain a column named 'sample' containing sample names that must match folder names in 'data.path' (default = NULL)
cms
list List with count matrices (default = NULL)
samples
character Sample names. Only relevant is cms is provided (default = NULL)
unique.names
logical Create unique cell names. Only relevant if cms is provided (default = TRUE)
sep.cells
character Sample-cell separator. Only relevant if cms is provided and
unique.names=TRUE
(default = "!!")comp.group
character A group present in the metadata to compare the metrics by, can be added with addComparison (default = NULL)
verbose
logical Print messages or not (default = TRUE)
theme
ggplot2 theme (default: theme_bw())
n.cores
integer Number of cores for the calculations (default = self$n.cores)
sep.meta
character Separator for metadata file (default = ",")
raw.meta
logical Keep metadata in its raw format. If FALSE, classes will be converted using "type.convert" (default = FALSE)
pal
character Plotting palette (default = NULL)
Returns
CRMetrics object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") }
Method addDetailedMetrics()
Function to read in detailed metrics. This is not done upon initialization for speed.
Usage
CRMetrics$addDetailedMetrics( cms = self$cms, min.transcripts.per.cell = 100, n.cores = self$n.cores, verbose = self$verbose )
Arguments
cms
list List of (sparse) count matrices (default = self$cms)
min.transcripts.per.cell
numeric Minimal number of transcripts per cell (default = 100)
n.cores
integer Number of cores for the calculations (default = self$n.cores).
verbose
logical Print messages or not (default = self$verbose).
Returns
Count matrices
Examples
# Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Run function crm$addDetailedMetrics()
Method addComparison()
Add comparison group for statistical testing.
Usage
CRMetrics$addComparison(comp.group, metadata = self$metadata)
Arguments
comp.group
character Comparison metric (default = self$comp.group).
metadata
data.frame Metadata for samples (default = self$metadata).
Returns
Vector
Examples
# Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Add metadata crm$metadata <- data.frame(sex = c("male","female")) # Add comparison group crm$addComparison(comp.group = "sex")
Method plotSamples()
Plot the number of samples.
Usage
CRMetrics$plotSamples( comp.group = self$comp.group, h.adj = 0.05, exact = FALSE, metadata = self$metadata, second.comp.group = NULL, pal = self$pal )
Arguments
comp.group
character Comparison metric, must match a column name of metadata (default = self$comp.group).
h.adj
numeric Position of statistics test p value as % of max(y) (default = 0.05).
exact
logical Whether to calculate exact p values (default = FALSE).
metadata
data.frame Metadata for samples (default = self$metadata).
second.comp.group
character Second comparison metric, must match a column name of metadata (default = NULL).
pal
character Plotting palette (default = self$pal)
Returns
ggplot2 object
Examples
samples <- c("sample1", "sample2") # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) names(testdata.cms) <- samples # Create metadata metadata <- data.frame(sample = samples, sex = c("male","female"), condition = c("a","b")) # Initialize crm <- CRMetrics$new(cms = testdata.cms, metadata = metadata, n.cores = 1) # Plot crm$plotSamples(comp.group = "sex", second.comp.group = "condition")
Method plotSummaryMetrics()
Plot all summary stats or a selected list.
Usage
CRMetrics$plotSummaryMetrics( comp.group = self$comp.group, second.comp.group = NULL, metrics = NULL, h.adj = 0.05, plot.stat = TRUE, stat.test = c("non-parametric", "parametric"), exact = FALSE, metadata = self$metadata, summary.metrics = self$summary.metrics, plot.geom = "bar", se = FALSE, group.reg.lines = FALSE, secondary.testing = TRUE, pal = self$pal )
Arguments
comp.group
character Comparison metric (default = self$comp.group).
second.comp.group
character Second comparison metric, used for the metric "samples per group" or when "comp.group" is a numeric or an integer (default = NULL).
metrics
character Metrics to plot (default = NULL).
h.adj
numeric Position of statistics test p value as % of max(y) (default = 0.05)
plot.stat
logical Show statistics in plot. Will be FALSE if "comp.group" = "sample" or if "comp.group" is a numeric or an integer (default = TRUE)
stat.test
character Statistical test to perform to compare means. Can either be "non-parametric" or "parametric" (default = "non-parametric").
exact
logical Whether to calculate exact p values (default = FALSE).
metadata
data.frame Metadata for samples (default = self$metadata).
summary.metrics
data.frame Summary metrics (default = self$summary.metrics).
plot.geom
character Which geometric is used to plot the data (default = "point").
se
logical For regression lines, show SE (default = FALSE)
group.reg.lines
logical For regression lines, if FALSE show one line, if TRUE show line per group defined by second.comp.group (default = FALSE)
secondary.testing
logical Whether to show post hoc testing (default = TRUE)
pal
character Plotting palette (default = self$pal)
Returns
ggplot2 object
Examples
\donttest{ # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Add summary metrics crm$addSummaryFromCms() crm$plotSummaryMetrics(plot.geom = "point") }
Method plotDetailedMetrics()
Plot detailed metrics from the detailed.metrics object
Usage
CRMetrics$plotDetailedMetrics( comp.group = self$comp.group, detailed.metrics = self$detailed.metrics, metadata = self$metadata, metrics = NULL, plot.geom = "violin", hline = TRUE, pal = self$pal )
Arguments
comp.group
character Comparison metric (default = self$comp.group).
detailed.metrics
data.frame Object containing the count matrices (default = self$detailed.metrics).
metadata
data.frame Metadata for samples (default = self$metadata).
metrics
character Metrics to plot. NULL plots both plots (default = NULL).
plot.geom
character How to plot the data (default = "violin").
hline
logical Whether to show median as horizontal line (default = TRUE)
pal
character Plotting palette (default = self$pal)
data.path
character Path to Cell Ranger count data (default = self$data.path).
Returns
ggplot2 object
Examples
\donttest{ # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Add detailed metrics crm$addDetailedMetrics() # Plot crm$plotDetailedMetrics() }
Method plotEmbedding()
Plot cells in embedding using Conos and color by depth and doublets.
Usage
CRMetrics$plotEmbedding( depth = FALSE, doublet.method = NULL, doublet.scores = FALSE, depth.cutoff = 1000, mito.frac = FALSE, mito.cutoff = 0.05, species = c("human", "mouse"), size = 0.3, sep = "!!", pal = NULL, ... )
Arguments
depth
logical Plot depth or not (default = FALSE).
doublet.method
character Doublet detection method (default = NULL).
doublet.scores
logical Plot doublet scores or not (default = FALSE).
depth.cutoff
numeric Depth cutoff (default = 1e3).
mito.frac
logical Plot mitochondrial fraction or not (default = FALSE).
mito.cutoff
numeric Mitochondrial fraction cutoff (default = 0.05).
species
character Species to calculate the mitochondrial fraction for (default = c("human","mouse")).
size
numeric Dot size (default = 0.3)
sep
character Separator for creating unique cell names (default = "!!")
pal
character Plotting palette (default = NULL)
...
Plotting parameters passed to
sccore::embeddingPlot
.
Returns
ggplot2 object
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() crm$plotEmbedding() } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method plotDepth()
Plot the sequencing depth in histogram.
Usage
CRMetrics$plotDepth( cutoff = 1000, samples = self$metadata$sample, sep = "!!", keep.col = "#E7CDC2", filter.col = "#A65141" )
Arguments
cutoff
numeric The depth cutoff to color the cells in the embedding (default = 1e3).
samples
character Sample names to include for plotting (default = $metadata$sample).
sep
character Separator for creating unique cell names (default = "!!")
keep.col
character Color for density of cells that are kept (default = "#E7CDC2")
filter.col
Character Color for density of cells to be filtered (default = "#A65141")
Returns
ggplot2 object
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() # Plot crm$plotDepth() } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method plotMitoFraction()
Plot the mitochondrial fraction in histogram.
Usage
CRMetrics$plotMitoFraction( cutoff = 0.05, species = c("human", "mouse"), samples = self$metadata$sample, sep = "!!", keep.col = "#E7CDC2", filter.col = "#A65141" )
Arguments
cutoff
numeric The mito. fraction cutoff to color the embedding (default = 0.05)
species
character Species to calculate the mitochondrial fraction for (default = "human")
samples
character Sample names to include for plotting (default = $metadata$sample)
sep
character Separator for creating unique cell names (default = "!!")
keep.col
character Color for density of cells that are kept (default = "#E7CDC2")
filter.col
Character Color for density of cells to be filtered (default = "#A65141")
Returns
ggplot2 object
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() # Plot crm$plotMitoFraction() } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method detectDoublets()
Detect doublet cells.
Usage
CRMetrics$detectDoublets( method = c("scrublet", "doubletdetection"), cms = self$cms, samples = self$metadata$sample, env = "r-reticulate", conda.path = system("whereis conda"), n.cores = self$n.cores, verbose = self$verbose, args = list(), export = FALSE, data.path = self$data.path )
Arguments
method
character Which method to use, either
scrublet
ordoubletdetection
(default="scrublet").cms
list List containing the count matrices (default=self$cms).
samples
character Vector of sample names. If NULL, samples are extracted from cms (default = self$metadata$sample)
env
character Environment to run python in (default="r-reticulate").
conda.path
character Path to conda environment (default=system("whereis conda")).
n.cores
integer Number of cores to use (default = self$n.cores)
verbose
logical Print messages or not (default = self$verbose)
args
list A list with additional arguments for either
DoubletDetection
orscrublet
. Please check the respective manuals.export
boolean Export CMs in order to detect doublets outside R (default = FALSE)
data.path
character Path to write data, only relevant if
export = TRUE
. Last character must be/
(default = self$data.path)
Returns
data.frame
Examples
\dontrun{ # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Detect doublets crm$detectDoublets(method = "scrublet", conda.path = "/opt/software/miniconda/4.12.0/condabin/conda") }
Method doPreprocessing()
Perform conos preprocessing.
Usage
CRMetrics$doPreprocessing( cms = self$cms, preprocess = c("pagoda2", "seurat"), min.transcripts.per.cell = 100, verbose = self$verbose, n.cores = self$n.cores, get.largevis = FALSE, tsne = FALSE, make.geneknn = FALSE, cluster = FALSE, ... )
Arguments
cms
list List containing the count matrices (default = self$cms).
preprocess
character Method to use for preprocessing (default = c("pagoda2","seurat")).
min.transcripts.per.cell
numeric Minimal transcripts per cell (default = 100)
verbose
logical Print messages or not (default = self$verbose).
n.cores
integer Number of cores for the calculations (default = self$n.cores).
get.largevis
logical For Pagoda2, create largeVis embedding (default = FALSE)
tsne
logical Create tSNE embedding (default = FALSE)
make.geneknn
logical For Pagoda2, estimate gene kNN (default = FALSE)
cluster
logical For Seurat, estimate clusters (default = FALSE)
...
Additional arguments for
Pagaoda2::basicP2Proc
orconos:::basicSeuratProc
Returns
Conos object
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Perform preprocessing crm$doPreprocessing(preprocess = "pagoda2") } else { message("Package 'pagoda2' not available.") } }
Method createEmbedding()
Create Conos embedding.
Usage
CRMetrics$createEmbedding( cms = self$cms.preprocessed, verbose = self$verbose, n.cores = self$n.cores, arg.buildGraph = list(), arg.findCommunities = list(), arg.embedGraph = list(method = "UMAP") )
Arguments
cms
list List containing the preprocessed count matrices (default = self$cms.preprocessed).
verbose
logical Print messages or not (default = self$verbose).
n.cores
integer Number of cores for the calculations (default = self$n.cores).
arg.buildGraph
list A list with additional arguments for the
buildGraph
function in Conos (default = list())arg.findCommunities
list A list with additional arguments for the
findCommunities
function in Conos (default = list())arg.embedGraph
list A list with additional arguments for the
embedGraph
function in Conos (default = list(method = "UMAP))
Returns
Conos object
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method filterCms()
Filter cells based on depth, mitochondrial fraction and doublets from the count matrix.
Usage
CRMetrics$filterCms( depth.cutoff = NULL, mito.cutoff = NULL, doublets = NULL, species = c("human", "mouse"), samples.to.exclude = NULL, verbose = self$verbose, sep = "!!", raw = FALSE )
Arguments
depth.cutoff
numeric Depth (transcripts per cell) cutoff (default = NULL).
mito.cutoff
numeric Mitochondrial fraction cutoff (default = NULL).
doublets
character Doublet detection method to use (default = NULL).
species
character Species to calculate the mitochondrial fraction for (default = "human").
samples.to.exclude
character Sample names to exclude (default = NULL)
verbose
logical Show progress (default = self$verbose)
sep
character Separator for creating unique cell names (default = "!!")
raw
boolean Filter on raw, unfiltered count matrices. Usually not intended (default = FALSE)
Returns
list of filtered count matrices
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() # Filter CMs crm$filterCms(depth.cutoff = 1e3, mito.cutoff = 0.05) } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method selectMetrics()
Select metrics from summary.metrics
Usage
CRMetrics$selectMetrics(ids = NULL)
Arguments
ids
character Metric id to select (default = NULL).
Returns
vector
Examples
# Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Select metrics crm$selectMetrics() selection.metrics <- crm$selectMetrics(c(1:4))
Method plotFilteredCells()
Plot filtered cells in an embedding, in a bar plot, on a tile or export the data frame
Usage
CRMetrics$plotFilteredCells( type = c("embedding", "bar", "tile", "export"), depth = TRUE, depth.cutoff = 1000, doublet.method = NULL, mito.frac = TRUE, mito.cutoff = 0.05, species = c("human", "mouse"), size = 0.3, sep = "!!", cols = c("grey80", "red", "blue", "green", "yellow", "black", "pink", "purple"), ... )
Arguments
type
character The type of plot to use: embedding, bar, tile or export (default = c("embedding","bar","tile","export")).
depth
logical Plot the depth or not (default = TRUE).
depth.cutoff
numeric Depth cutoff, either a single number or a vector with cutoff per sample and with sampleIDs as names (default = 1e3).
doublet.method
character Method to detect doublets (default = NULL).
mito.frac
logical Plot the mitochondrial fraction or not (default = TRUE).
mito.cutoff
numeric Mitochondrial fraction cutoff, either a single number or a vector with cutoff per sample and with sampleIDs as names (default = 0.05).
species
character Species to calculate the mitochondrial fraction for (default = c("human","mouse")).
size
numeric Dot size (default = 0.3)
sep
character Separator for creating unique cell names (default = "!!")
cols
character Colors used for plotting (default = c("grey80","red","blue","green","yellow","black","pink","purple"))
...
Plotting parameters passed to
sccore::embeddingPlot
.
Returns
ggplot2 object or data frame
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() # Plot and extract result crm$plotFilteredCells(type = "embedding") filtered.cells <- crm$plotFilteredCells(type = "export") } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method getDepth()
Extract sequencing depth from Conos object.
Usage
CRMetrics$getDepth(cms = self$cms)
Arguments
cms
list List of (sparse) count matrices (default = self$cms)
Returns
data frame
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() # Get depth crm$getDepth() } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method getMitoFraction()
Calculate the fraction of mitochondrial genes.
Usage
CRMetrics$getMitoFraction(species = c("human", "mouse"), cms = self$cms)
Arguments
species
character Species to calculate the mitochondrial fraction for (default = "human").
cms
list List of (sparse) count matrices (default = self$cms)
Returns
data frame
Examples
\donttest{ if (requireNamespace("pagoda2", quietly = TRUE)) { if (requireNamespace("conos", quietly = TRUE)) { # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Create embedding crm$doPreprocessing() crm$createEmbedding() # Get mito. fraction crm$getMitoFraction(species = c("human", "mouse")) } else { message("Package 'conos' not available.") } } else { message("Package 'pagoda2' not available.") } }
Method prepareCellbender()
Create plots and script call for CellBender
Usage
CRMetrics$prepareCellbender( shrinkage = 100, show.expected.cells = TRUE, show.total.droplets = TRUE, expected.cells = NULL, total.droplets = NULL, cms.raw = self$cms.raw, umi.counts = self$cellbender$umi.counts, data.path = self$data.path, samples = self$metadata$sample, verbose = self$verbose, n.cores = self$n.cores, unique.names = FALSE, sep = "!!" )
Arguments
shrinkage
integer Select every nth UMI count per cell for plotting. Improves plotting speed drastically. To plot all cells, set to 1 (default = 100)
show.expected.cells
logical Plot line depicting expected number of cells (default = TRUE)
show.total.droplets
logical Plot line depicting total droplets included for CellBender run (default = TRUE)
expected.cells
named numeric If NULL, expected cells will be deduced from the number of cells per sample identified by Cell Ranger. Otherwise, a named vector of expected cells with sample IDs as names. Sample IDs must match those in summary.metrics (default: stored named vector)
total.droplets
named numeric If NULL, total droplets included will be deduced from expected cells multiplied by 3. Otherwise, a named vector of total droplets included with sample IDs as names. Sample IDs must match those in summary.metrics (default: stored named vector)
cms.raw
list Raw count matrices from HDF5 Cell Ranger outputs (default = self$cms.raw)
umi.counts
list UMI counts calculated as column sums of raw count matrices from HDF5 Cell Ranger outputs (default: stored list)
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
verbose
logical Show progress (default: stored vector)
n.cores
integer Number of cores (default: stored vector)
unique.names
logical Create unique cell names (default = FALSE)
sep
character Separator for creating unique cell names (default = "!!")
Returns
ggplot2 object and bash script
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data") crm$prepareCellbender() }
Method saveCellbenderScript()
Usage
CRMetrics$saveCellbenderScript( file = "cellbender_script.sh", fpr = 0.01, epochs = 150, use.gpu = TRUE, expected.cells = NULL, total.droplets = NULL, data.path = self$data.path, samples = self$metadata$sample, args = NULL )
Arguments
file
character File name for CellBender script. Will be stored in
data.path
(default: "cellbender_script.sh")fpr
numeric False positive rate for CellBender (default = 0.01)
epochs
integer Number of epochs for CellBender (default = 150)
use.gpu
logical Use CUDA capable GPU (default = TRUE)
expected.cells
named numeric If NULL, expected cells will be deduced from the number of cells per sample identified by Cell Ranger. Otherwise, a named vector of expected cells with sample IDs as names. Sample IDs must match those in summary.metrics (default: stored named vector)
total.droplets
named numeric If NULL, total droplets included will be deduced from expected cells multiplied by 3. Otherwise, a named vector of total droplets included with sample IDs as names. Sample IDs must match those in summary.metrics (default: stored named vector)
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
args
character (optional) Additional parameters for CellBender
Returns
bash script
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$prepareCellbender() crm$saveCellbenderScript() }
Method getExpectedCells()
Extract the expected number of cells per sample based on the Cell Ranger summary metrics
Usage
CRMetrics$getExpectedCells(samples = self$metadata$sample)
Arguments
samples
character Sample names to include (default = self$metadata$sample)
Returns
A numeric vector
Examples
# Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Get summary crm$addSummaryFromCms() # Get no. cells crm$getExpectedCells()
Method getTotalDroplets()
Get the total number of droplets included in the CellBender estimations. Based on the Cell Ranger summary metrics and multiplied by a preset multiplier.
Usage
CRMetrics$getTotalDroplets(samples = self$metadata$sample, multiplier = 3)
Arguments
samples
character Samples names to include (default = self$metadata$sample)
multiplier
numeric Number to multiply expected number of cells with (default = 3)
Returns
A numeric vector
Examples
# Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Add summary crm$addSummaryFromCms() # Get no. droplets crm$getTotalDroplets()
Method addCms()
Add a list of count matrices to the CRMetrics object.
Usage
CRMetrics$addCms( cms = NULL, data.path = self$data.path, samples = self$metadata$sample, cellbender = FALSE, raw = FALSE, symbol = TRUE, unique.names = TRUE, sep = "!!", add.metadata = TRUE, n.cores = self$n.cores, verbose = self$verbose )
Arguments
cms
list List of (sparse) count matrices (default = NULL)
data.path
character Path to cellranger count data (default = self$data.path).
samples
character Vector of sample names. If NULL, samples are extracted from cms (default = self$metadata$sample)
cellbender
logical Add CellBender filtered count matrices in HDF5 format. Requires that "cellbender" is in the names of the files (default = FALSE)
raw
logical Add raw count matrices from Cell Ranger output. Cannot be combined with
cellbender=TRUE
(default = FALSE)symbol
character The type of gene IDs to use, SYMBOL (TRUE) or ENSEMBLE (default = TRUE)
unique.names
logical Make cell names unique based on
sep
parameter (default = TRUE)sep
character Separator used to create unique cell names (default = "!!")
add.metadata
boolean Add metadata from cms or not (default = TRUE)
n.cores
integer Number of cores to use (default = self$n.cores)
verbose
boolean Print progress (default = self$verbose)
Returns
Add list of (sparse) count matrices to R6 class object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") # Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) crm$addCms(cms = testdata.cms) }
Method plotCbTraining()
Plot the results from the CellBender estimations
Usage
CRMetrics$plotCbTraining( data.path = self$data.path, samples = self$metadata$sample, pal = self$pal )
Arguments
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
pal
character Plotting palette (default = self$pal)
Returns
A ggplot2 object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$prepareCellbender() crm$saveCellbenderScript() ## Run CellBender script crm$plotCbTraining() }
Method plotCbCellProbs()
Plot the CellBender assigned cell probabilities
Usage
CRMetrics$plotCbCellProbs( data.path = self$data.path, samples = self$metadata$sample, low.col = "gray", high.col = "red" )
Arguments
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
low.col
character Color for low probabilities (default = "gray")
high.col
character Color for high probabilities (default = "red")
Returns
A ggplot2 object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$prepareCellbender() crm$saveCellbenderScript() ## Run the CellBender script crm$plotCbCellProbs() }
Method plotCbAmbExp()
Plot the estimated ambient gene expression per sample from CellBender calculations
Usage
CRMetrics$plotCbAmbExp( cutoff = 0.005, data.path = self$data.path, samples = self$metadata$sample )
Arguments
cutoff
numeric Horizontal line included in the plot to indicate highly expressed ambient genes (default = 0.005)
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
Returns
A ggplot2 object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$prepareCellbender() crm$saveCellbenderScript() ## Run CellBender script crm$plotCbAmbExp() }
Method plotCbAmbGenes()
Plot the most abundant estimated ambient genes from the CellBender calculations
Usage
CRMetrics$plotCbAmbGenes( cutoff = 0.005, data.path = self$data.path, samples = self$metadata$sample, pal = self$pal )
Arguments
cutoff
numeric Cutoff of ambient gene expression to use to extract ambient genes per sample
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
pal
character Plotting palette (default = self$pal)
Returns
A ggplot2 object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$prepareCellbender() crm$saveCellbenderScript() ## Run CellBender script crm$plotCbAmbGenes() }
Method addSummaryFromCms()
Add summary metrics from a list of count matrices
Usage
CRMetrics$addSummaryFromCms( cms = self$cms, n.cores = self$n.cores, verbose = self$verbose )
Arguments
cms
list A list of filtered count matrices (default = self$cms)
n.cores
integer Number of cores to use (default = self$n.cores)
verbose
logical Show progress (default = self$verbose)
Returns
data.frame
Examples
# Simulate data testdata.cms <- lapply(seq_len(2), \(x) { out <- Matrix::rsparsematrix(2e3, 1e3, 0.1) out[out < 0] <- 1 dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)), sapply(seq_len(1e3), \(x) paste0("cell",x))) return(out) }) # Initialize crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1) # Add summary crm$addSummaryFromCms()
Method runSoupX()
Run SoupX ambient RNA estimation and correction
Usage
CRMetrics$runSoupX( data.path = self$data.path, samples = self$metadata$sample, n.cores = self$n.cores, verbose = self$verbose, arg.load10X = list(), arg.autoEstCont = list(), arg.adjustCounts = list() )
Arguments
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
n.cores
numeric Number of cores (default = self$n.cores)
verbose
logical Show progress (default = self$verbose)
arg.load10X
list A list with additional parameters for
SoupX::load10X
(default = list())arg.autoEstCont
list A list with additional parameters for
SoupX::autoEstCont
(default = list())arg.adjustCounts
list A list with additional parameters for
SoupX::adjustCounts
(default = list())
Returns
List containing a list with corrected counts, and a data.frame containing plotting estimations
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$runSoupX() }
Method plotSoupX()
Plot the results from the SoupX estimations
Usage
CRMetrics$plotSoupX(plot.df = self$soupx$plot.df)
Arguments
plot.df
data.frame SoupX estimations (default = self$soupx$plot.df)
Returns
A ggplot2 object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$runSoupX() crm$plotSoupX() }
Method plotCbCells()
Plot CellBender cell estimations against the estimated cell numbers from Cell Ranger
Usage
CRMetrics$plotCbCells( data.path = self$data.path, samples = self$metadata$sample, pal = self$pal )
Arguments
data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
pal
character Plotting palette (default = self$pal)
Returns
A ggplot2 object
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$prepareCellbender() crm$saveCellbenderScript() ## Run CellBender script crm$plotCbCells() }
Method addDoublets()
Add doublet results created from exported Python script
Usage
CRMetrics$addDoublets( method = c("scrublet", "doubletdetection"), data.path = self$data.path, samples = self$metadata$sample, cms = self$cms, verbose = self$verbose )
Arguments
method
character Which method to use, either
scrublet
ordoubletdetection
(default is both).data.path
character Path to Cell Ranger outputs (default = self$data.path)
samples
character Sample names to include (default = self$metadata$sample)
cms
list List containing the count matrices (default = self$cms).
verbose
boolean Print progress (default = self$verbose)
Returns
List of doublet results
Examples
\dontrun{ crm <- CRMetrics$new(data.path = "/path/to/count/data/") crm$detectDoublets(export = TRUE) ## Run Python script crm$addDoublets() }
Method clone()
The objects of this class are cloneable with this method.
Usage
CRMetrics$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
## ------------------------------------------------
## Method `CRMetrics$new`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$addDetailedMetrics`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Run function
crm$addDetailedMetrics()
## ------------------------------------------------
## Method `CRMetrics$addComparison`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Add metadata
crm$metadata <- data.frame(sex = c("male","female"))
# Add comparison group
crm$addComparison(comp.group = "sex")
## ------------------------------------------------
## Method `CRMetrics$plotSamples`
## ------------------------------------------------
samples <- c("sample1", "sample2")
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
names(testdata.cms) <- samples
# Create metadata
metadata <- data.frame(sample = samples,
sex = c("male","female"),
condition = c("a","b"))
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, metadata = metadata, n.cores = 1)
# Plot
crm$plotSamples(comp.group = "sex", second.comp.group = "condition")
## ------------------------------------------------
## Method `CRMetrics$plotSummaryMetrics`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Add summary metrics
crm$addSummaryFromCms()
crm$plotSummaryMetrics(plot.geom = "point")
## ------------------------------------------------
## Method `CRMetrics$plotDetailedMetrics`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Add detailed metrics
crm$addDetailedMetrics()
# Plot
crm$plotDetailedMetrics()
## ------------------------------------------------
## Method `CRMetrics$plotEmbedding`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
crm$plotEmbedding()
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$plotDepth`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
# Plot
crm$plotDepth()
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$plotMitoFraction`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
# Plot
crm$plotMitoFraction()
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$detectDoublets`
## ------------------------------------------------
## Not run:
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Detect doublets
crm$detectDoublets(method = "scrublet",
conda.path = "/opt/software/miniconda/4.12.0/condabin/conda")
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$doPreprocessing`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Perform preprocessing
crm$doPreprocessing(preprocess = "pagoda2")
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$createEmbedding`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$filterCms`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
# Filter CMs
crm$filterCms(depth.cutoff = 1e3, mito.cutoff = 0.05)
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$selectMetrics`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Select metrics
crm$selectMetrics()
selection.metrics <- crm$selectMetrics(c(1:4))
## ------------------------------------------------
## Method `CRMetrics$plotFilteredCells`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
# Plot and extract result
crm$plotFilteredCells(type = "embedding")
filtered.cells <- crm$plotFilteredCells(type = "export")
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$getDepth`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
# Get depth
crm$getDepth()
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$getMitoFraction`
## ------------------------------------------------
if (requireNamespace("pagoda2", quietly = TRUE)) {
if (requireNamespace("conos", quietly = TRUE)) {
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Create embedding
crm$doPreprocessing()
crm$createEmbedding()
# Get mito. fraction
crm$getMitoFraction(species = c("human", "mouse"))
} else {
message("Package 'conos' not available.")
}
} else {
message("Package 'pagoda2' not available.")
}
## ------------------------------------------------
## Method `CRMetrics$prepareCellbender`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data")
crm$prepareCellbender()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$saveCellbenderScript`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$prepareCellbender()
crm$saveCellbenderScript()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$getExpectedCells`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Get summary
crm$addSummaryFromCms()
# Get no. cells
crm$getExpectedCells()
## ------------------------------------------------
## Method `CRMetrics$getTotalDroplets`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Add summary
crm$addSummaryFromCms()
# Get no. droplets
crm$getTotalDroplets()
## ------------------------------------------------
## Method `CRMetrics$addCms`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
crm$addCms(cms = testdata.cms)
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$plotCbTraining`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$prepareCellbender()
crm$saveCellbenderScript()
## Run CellBender script
crm$plotCbTraining()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$plotCbCellProbs`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$prepareCellbender()
crm$saveCellbenderScript()
## Run the CellBender script
crm$plotCbCellProbs()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$plotCbAmbExp`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$prepareCellbender()
crm$saveCellbenderScript()
## Run CellBender script
crm$plotCbAmbExp()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$plotCbAmbGenes`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$prepareCellbender()
crm$saveCellbenderScript()
## Run CellBender script
crm$plotCbAmbGenes()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$addSummaryFromCms`
## ------------------------------------------------
# Simulate data
testdata.cms <- lapply(seq_len(2), \(x) {
out <- Matrix::rsparsematrix(2e3, 1e3, 0.1)
out[out < 0] <- 1
dimnames(out) <- list(sapply(seq_len(2e3), \(x) paste0("gene",x)),
sapply(seq_len(1e3), \(x) paste0("cell",x)))
return(out)
})
# Initialize
crm <- CRMetrics$new(cms = testdata.cms, samples = c("sample1", "sample2"), n.cores = 1)
# Add summary
crm$addSummaryFromCms()
## ------------------------------------------------
## Method `CRMetrics$runSoupX`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$runSoupX()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$plotSoupX`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$runSoupX()
crm$plotSoupX()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$plotCbCells`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$prepareCellbender()
crm$saveCellbenderScript()
## Run CellBender script
crm$plotCbCells()
## End(Not run)
## ------------------------------------------------
## Method `CRMetrics$addDoublets`
## ------------------------------------------------
## Not run:
crm <- CRMetrics$new(data.path = "/path/to/count/data/")
crm$detectDoublets(export = TRUE)
## Run Python script
crm$addDoublets()
## End(Not run)
Add detailed metrics
Description
Add detailed metrics, requires to load raw count matrices using pagoda2.
Usage
addDetailedMetricsInner(cms, verbose = TRUE, n.cores = 1)
Arguments
cms |
List containing the count matrices. |
verbose |
Print messages (default = TRUE). |
n.cores |
Number of cores for the calculations (default = 1). |
Value
data frame
Add statistics to plot
Description
Use ggpubr to add statistics to plots.
Usage
addPlotStats(
p,
comp.group,
metadata,
h.adj = 0.05,
primary.test,
secondary.test,
exact = FALSE
)
Arguments
p |
Plot to add statistics to. |
comp.group |
Comparison metric. |
metadata |
Metadata for samples. |
h.adj |
Position of statistics test p value as % of max(y) (default = 0.05). |
primary.test |
Primary statistical test, e.g. "anova", "kruskal.test". |
secondary.test |
Secondary statistical test, e.g. "t-test", "wilcox.test" |
exact |
Whether to calculate exact p values (default = FALSE). |
Value
ggplot2 object
Add statistics to plot
Description
Use ggpubr to add statistics to samples or plot
Usage
addPlotStatsSamples(
p,
comp.group,
metadata,
h.adj = 0.05,
exact = FALSE,
second.comp.group
)
Arguments
p |
Plot to add statistics to. |
comp.group |
Comparison metric. |
metadata |
Metadata for samples. |
h.adj |
Position of statistics test p value as % of max(y) (default = 0.05). |
exact |
Whether to calculate exact p values (default = FALSE). |
second.comp.group |
Second comparison metric. |
Value
ggplot2 object
Add summary metrics
Description
Add summary metrics by reading Cell Ranger metrics summary files.
Usage
addSummaryMetrics(data.path, metadata, n.cores = 1, verbose = TRUE)
Arguments
data.path |
Path to cellranger count data. |
metadata |
Metadata for samples. |
n.cores |
Number of cores for the calculations (default = 1). |
verbose |
Print messages (default = TRUE). |
Value
data frame
Set correct 'comp.group' parameter
Description
Set comp.group to 'category' if null.
Usage
checkCompGroup(comp.group, category, verbose = TRUE)
Arguments
comp.group |
Comparison metric. |
category |
Comparison metric to use if comp.group is not provided. |
verbose |
Print messages (default = TRUE). |
Value
vector
Check whether 'comp.group' is in metadata
Description
Checks whether 'comp.group' is any of the column names in metadata.
Usage
checkCompMeta(comp.group, metadata)
Arguments
comp.group |
Comparison metric. |
metadata |
Metadata for samples. |
Value
nothing or stop
Check data path
Description
Helper function to check that data.path is not NULL
Usage
checkDataPath(data.path)
Arguments
data.path |
character Path to be checked |
Create unique cell names
Description
Create unique cell names from sample IDs and cell IDs
Usage
createUniqueCellNames(cms, samples, sep = "!!")
Arguments
cms |
list List of count matrices, should be named (optional) |
samples |
character Optional, list of sample names |
sep |
character Separator between sample IDs and cell IDs (default = "!!") |
Create filtering vector
Description
Create logical filtering vector based on a numeric vector and a (sample-wise) cutoff
Usage
filterVector(num.vec, name, filter, samples, sep = "!!")
Arguments
num.vec |
numeric Numeric vector to create filter on |
name |
character Name of filter |
filter |
numeric Either a single numeric value or a numeric value with length of samples |
samples |
character Sample IDs |
sep |
character Separator to split cells by into sample-wise lists (default = "!!") |
Get H5 file paths
Description
Get file paths for H5 files
Usage
getH5Paths(data.path, samples = NULL, type = NULL)
Arguments
data.path |
character Path for directory containing sample-wise directories with Cell Ranger count outputs |
samples |
character Sample names to include (default = NULL) |
type |
character Type of H5 files to get paths for, one of "raw", "filtered" (Cell Ranger count outputs), "cellbender" (raw CellBender outputs), "cellbender_filtered" (CellBender filtered outputs) (default = "type") |
Get labels for percentage of filtered cells
Description
Labels the percentage of filtered cells based on mitochondrial fraction, sequencing depth and doublets as low, medium or high
Usage
labelsFilter(filter.data)
Arguments
filter.data |
Data frame containing the mitochondrial fraction, depth and doublets per sample. |
Value
data frame
Calculate percentage of filtered cells
Description
Calculate percentage of filtered cells based on the filter
Usage
percFilter(filter.data, filter = "mito", no.vars = 1)
Arguments
filter.data |
Data frame containing the mitochondrial fraction, depth and doublets per sample. |
filter |
The variable to filter (default = "mito") |
no.vars |
numeric Number of variables (default = 1) |
Value
vector
Plot the data as points, as bars as a histogram, or as a violin
Description
Plot the data as points, barplot, histogram or violin
Usage
plotGeom(g, plot.geom, col, pal = NULL)
Arguments
g |
ggplot2 object |
plot.geom |
The plot.geom to use, "point", "bar", "histogram", or "violin". |
pal |
character Palette (default = NULL) |
Value
geom
Load 10x count matrices
Description
Load gene expression count data
Usage
read10x(
data.path,
samples = NULL,
raw = FALSE,
symbol = TRUE,
sep = "!!",
unique.names = TRUE,
n.cores = 1,
verbose = TRUE
)
Arguments
data.path |
Path to cellranger count data. |
samples |
Vector of sample names (default = NULL) |
raw |
logical Add raw count matrices (default = FALSE) |
symbol |
The type of gene IDs to use, SYMBOL (TRUE) or ENSEMBLE (default = TRUE). |
sep |
Separator for cell names (default = "!!"). |
n.cores |
Number of cores for the calculations (default = 1). |
verbose |
Print messages (default = TRUE). |
Value
data frame
Examples
## Not run:
cms <- read10x(data.path = "/path/to/count/data",
samples = crm$metadata$samples,
raw = FALSE,
symbol = TRUE,
n.cores = crm$n.cores)
## End(Not run)
Read 10x HDF5 files
Description
Read 10x HDF5 files
Usage
read10xH5(
data.path,
samples = NULL,
type = c("raw", "filtered", "cellbender", "cellbender_filtered"),
symbol = TRUE,
sep = "!!",
n.cores = 1,
verbose = TRUE,
unique.names = FALSE
)
Arguments
data.path |
character |
samples |
character vector, select specific samples for processing (default = NULL) |
type |
name of H5 file to search for, "raw" and "filtered" are Cell Ranger count outputs, "cellbender" is output from CellBender after running script from saveCellbenderScript |
symbol |
logical Use gene SYMBOLs (TRUE) or ENSEMBL IDs (FALSE) (default = TRUE) |
sep |
character Separator for creating unique cell names from sample IDs and cell IDs (default = "!!") |
n.cores |
integer Number of cores (default = 1) |
verbose |
logical Print progress (default = TRUE) |
unique.names |
logical Create unique cell IDs (default = FALSE) |
Value
list with sparse count matrices
Examples
## Not run:
cms.h5 <- read10xH5(data.path = "/path/to/count/data")
## End(Not run)