## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(COINr) # build example coin coin <- build_example_coin(quietly = TRUE) ## ----------------------------------------------------------------------------- # component of SA_specs for winmax distribution l_winmax <- list(Address = "$Log$Treat$global_specs$f1_para$winmax", Distribution = 1:5, Type = "discrete") ## ----------------------------------------------------------------------------- # normalisation method # first, we define the two alternatives: minmax or zscore (along with respective parameters) norm_alts <- list( list(f_n = "n_minmax", f_n_para = list(c(1,100))), list(f_n = "n_zscore", f_n_para = list(c(10,2))) ) # now put this in a list l_norm <- list(Address = "$Log$Normalise$global_specs", Distribution = norm_alts, Type = "discrete") ## ----------------------------------------------------------------------------- # get nominal weights w_nom <- coin$Meta$Weights$Original # build data frame specifying the levels to apply the noise at noise_specs = data.frame(Level = c(2,3), NoiseFactor = c(0.25, 0.25)) # get 100 replications noisy_wts <- get_noisy_weights(w = w_nom, noise_specs = noise_specs, Nrep = 100) # examine one of the noisy weight sets tail(noisy_wts[[1]]) ## ----------------------------------------------------------------------------- # component of SA_specs for weights l_weights <- list(Address = "$Log$Aggregate$w", Distribution = noisy_wts, Type = "discrete") ## ----------------------------------------------------------------------------- ## aggregation l_agg <- list(Address = "$Log$Aggregate$f_ag", Distribution = c("a_amean", "a_gmean"), Type = "discrete") ## ----------------------------------------------------------------------------- # create overall specification list SA_specs <- list( Winmax = l_winmax, Normalisation = l_norm, Weights = l_weights, Aggregation = l_agg ) ## ---- eval=FALSE-------------------------------------------------------------- # # Not run here: will take a few seconds to finish if you run this # SA_res <- get_sensitivity(coin, SA_specs = SA_specs, N = 100, SA_type = "UA", # dset = "Aggregated", iCode = "Index") ## ----include=FALSE------------------------------------------------------------ SA_res <- readRDS("UA_results.RDS") ## ---- fig.width= 7------------------------------------------------------------ plot_uncertainty(SA_res) ## ----------------------------------------------------------------------------- head(SA_res$RankStats) ## ---- eval=FALSE-------------------------------------------------------------- # # Not run here: will take a few seconds to finish if you run this # SA_res <- get_sensitivity(coin, SA_specs = SA_specs, N = 100, SA_type = "SA", # dset = "Aggregated", iCode = "Index", Nboot = 100) ## ----include=FALSE------------------------------------------------------------ SA_res <- readRDS("SA_results.RDS") ## ---- fig.width=5------------------------------------------------------------- plot_sensitivity(SA_res) ## ---- fig.width=7------------------------------------------------------------- plot_sensitivity(SA_res, ptype = "box") ## ----------------------------------------------------------------------------- # run function removing elements in level 2 l_res <- remove_elements(coin, Level = 2, dset = "Aggregated", iCode = "Index") # get summary of rank changes l_res$MeanAbsDiff