## ----setup, echo = FALSE, warning=FALSE, message=FALSE------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----one, fig.width=7.0, fig.height=5.5, warning=FALSE, message=FALSE--------- library(CGPfunctions) # library(CHAID) library(dplyr) library(knitr) ### fit tree to subsample see ?chaid ## set.seed(290875) ## USvoteS <- USvote[sample(1:nrow(USvote), 1000),] ## ctrl <- chaid_control(minsplit = 200, minprob = 0.1) ## chaidUS <- chaid(vote3 ~ ., data = USvoteS, control = ctrl) print(chaidUS) plot(chaidUS) ## ----simple2, fig.width=7.0, fig.height=3.5----------------------------------- # simplest use --- chaidUS is included in the package class(chaidUS) chaid_table(chaidUS) mychaidtable <- chaid_table(chaidUS) ## ----simple3------------------------------------------------------------------ mychaidtable %>% select(nodeID:ruletext) %>% kable() # Just node #2 show percentage mychaidtable %>% select(nodeID:ruletext) %>% filter(nodeID == 2) %>% mutate(pctBush = Bush/NodeN * 100) %>% kable(digits = 1) # Just the children of node #5 mychaidtable %>% select(nodeID:ruletext) %>% filter(parent == 5) %>% kable() # stats for all splits including raw (unadjusted) p value mychaidtable %>% select(nodeID, NodeN, split.variable:rawpvalue) %>% filter(!is.na(split.variable)) %>% kable()