## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(AllelicSeries) ## ----------------------------------------------------------------------------- set.seed(101) data <- AllelicSeries::DGP(n = 1e3) head(data$covar) ## ----------------------------------------------------------------------------- # Format score test data.frame. df <- data.frame(data$covar) df$y <- data$pheno # Case of a continuous phenotype. # An intercept is omitted from the call to `lm` because one is already # contained in the covariate matrix. fit <- lm(y ~ 0 + ., data = df) summary(fit) ## ----eval = FALSE------------------------------------------------------------- # results <- AllelicSeries::COAST( # anno = data$anno, # geno = data$geno, # pheno = data$pheno, # covar = data$covar, # score_test = TRUE # ) ## ----------------------------------------------------------------------------- # Example of fitting the baseline allelic series model. g <- Aggregator(anno = data$anno, geno = data$geno, method = "none") colnames(g) <- c("g1", "g2", "g3") df_base <- cbind(data.frame(g), df) fit <- lm(y ~ 0 + ., data = df_base) summary(fit) # Example of fitting the allelic series sum model. g <- Aggregator(anno = data$anno, geno = data$geno, method = "sum") colnames(g) <- c("g_sum") df_sum <- cbind(data.frame(g), df) fit <- lm(y ~ 0 + ., data = df_sum) summary(fit) # Example of fitting the allelic series max model. g <- Aggregator(anno = data$anno, geno = data$geno, method = "max") colnames(g) <- c("g_max") df_max <- cbind(data.frame(g), df) fit <- lm(y ~ 0 + ., data = df_max) summary(fit)