## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6 ) ## ----one_line----------------------------------------------------------------- library(AIPW) library(SuperLearner) library(ggplot2) set.seed(123) data("eager_sim_obs") cov = c("eligibility","loss_num","age", "time_try_pregnant","BMI","meanAP") AIPW_SL <- AIPW$new(Y= eager_sim_obs$sim_Y, A= eager_sim_obs$sim_A, W= subset(eager_sim_obs,select=cov), Q.SL.library = c("SL.glm"), g.SL.library = c("SL.glm"), k_split = 2, verbose=TRUE)$ fit()$ summary() ## ----refit-------------------------------------------------------------------- # Create a new object from the previous AIPW_SL (Repeated class is an extension of the AIPW class) repeated_aipw_sl <- Repeated$new(aipw_obj = AIPW_SL) # Fit repetitively repeated_aipw_sl$repfit(num_reps = 30, stratified = F) # Summarise the median estimate, median SE, and the SE of median estimate adjusting for `num_reps` repetitions repeated_aipw_sl$summary_median() ## ----check refit-------------------------------------------------------------- # Check the distributions of estiamtes from `num_reps` repetitions s <- repeated_aipw_sl$repeated_estimates ggplot2::ggplot(ggplot2::aes(x=Estimate),data = s) + ggplot2::geom_histogram(bins = 10) + ggplot2::facet_grid(~Estimand, scales = "free") ggplot2::ggplot(ggplot2::aes(x=SE),data = s) + ggplot2::geom_histogram(bins = 10) + ggplot2::facet_grid(~Estimand, scales = "free")