## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("ACEt") ## ----eval=FALSE--------------------------------------------------------------- # install.packages("devtools") # library(devtools) # install_github("lhe17/ACEt") ## ----------------------------------------------------------------------------- library(ACEt) data(data_ace) ## ----------------------------------------------------------------------------- attributes(data_ace) head(data_ace$mz) head(data_ace$dz) ## ----------------------------------------------------------------------------- # fitting the ACE(t) model re <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','d','c'), knot_a = 6, knot_c = 4) summary(re) ## ----------------------------------------------------------------------------- # part of the expected information matrix re$hessian[1:8,1:8] # part the observed information matrix approximated by the L-BFGS algorithm re$hessian_ap[1:8,1:8] ## ----------------------------------------------------------------------------- re_cc <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','c','c'), knot_a = 6, knot_c = 4) p1 <- pchisq(2*(re_cc$lik-re$lik), 4, lower.tail=FALSE) p1 re_ac <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('c','d','c'), knot_a = 6, knot_c = 4) p2 <- pchisq(2*(re_ac$lik-re$lik), 6, lower.tail=FALSE) p2 re_cn <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','n','c'), knot_a = 6, knot_c = 4) p3 <- 0.5*pchisq(2*(re_cn$lik-re_cc$lik), 1, lower.tail=FALSE) p3 ## ----------------------------------------------------------------------------- plot_acet(re, ylab='Var', xlab='Age (1-50)') ## ----------------------------------------------------------------------------- ## fitting an ACE(t) model with the CIs esitmated by the bootstrap method re_b <- AtCtEt(data_ace$mz, data_ace$dz, mod = c('d','d','c'), knot_a = 6, knot_c = 4, boot = TRUE, num_b = 60) plot_acet(re_b, boot = TRUE) ## ----------------------------------------------------------------------------- ## plot dynamic heritability with the CIs using the delta method plot_acet(re_b, heri=TRUE, boot = FALSE) ## plot dynamic heritability with the CIs using the bootstrap method plot_acet(re_b, heri=TRUE, boot = TRUE) ## ----eval=FALSE--------------------------------------------------------------- # ## fitting an ADE(t) model with the CIs esitmated by the bootstrap method # re_b <- AtDtEt(data_ace$mz, data_ace$dz, mod = c('d','d','c'), boot = TRUE, num_b = 60) # plot_acet(re_b, boot = TRUE) ## ----------------------------------------------------------------------------- ## fitting an ACE(t)-p model re <- AtCtEtp(data_ace$mz, data_ace$dz, knot_a = 8, knot_c = 8, mod=c('d','d','l')) summary(re) ## ----------------------------------------------------------------------------- re_mcmc <- acetp_mcmc(re, iter_num = 5000, burnin = 500) summary(re_mcmc) ## ----------------------------------------------------------------------------- plot_acet(re_mcmc) plot_acet(re_mcmc, heri=TRUE) ## ----knot_10, echo=FALSE, fig.cap="Plots of variance curves of the example data set fitted by the ACE(t) and ACE(t)-p model with 10 interior knots for each component. Left: the ACE(t) model. Right: the ACE(t)-p model."---- knitr::include_graphics("knot_10.jpg") ## ----------------------------------------------------------------------------- test <- test_acetp(re, comp = 'e') test$p ## ----eval=FALSE--------------------------------------------------------------- # test <- test_acetp(re, comp = 'c', sim = 100, robust = 0) # test$p