CRAN Package Check Results for Package netmeta

Last updated on 2025-01-17 10:48:29 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 2.9-0 35.24 407.28 442.52 ERROR
r-devel-linux-x86_64-debian-gcc 2.9-0 20.91 253.85 274.76 ERROR
r-devel-linux-x86_64-fedora-clang 2.9-0 748.51 ERROR
r-devel-linux-x86_64-fedora-gcc 2.9-0 533.10 ERROR
r-devel-windows-x86_64 2.9-0 35.00 520.00 555.00 NOTE
r-patched-linux-x86_64 2.9-0 40.45 458.58 499.03 OK
r-release-linux-x86_64 2.9-0 30.52 385.64 416.16 ERROR
r-release-macos-arm64 2.9-0 191.00 OK
r-release-macos-x86_64 2.9-0 311.00 OK
r-release-windows-x86_64 2.9-0 33.00 514.00 547.00 OK
r-oldrel-macos-arm64 2.9-0 159.00 OK
r-oldrel-macos-x86_64 2.9-0 353.00 OK
r-oldrel-windows-x86_64 2.9-0 42.00 676.00 718.00 OK

Additional issues

noSuggests

Check Details

Version: 2.9-0
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: Baker2009.Rd: metabin Dogliotti2014.Rd: metabin Dong2013.Rd: metabin Franchini2012.Rd: metacont Gurusamy2011.Rd: metabin Linde2015.Rd: metabin Stowe2010.Rd: metacont Woods2010.Rd: metabin dietaryfat.Rd: metainc forest.netbind.Rd: forest.meta forest.netcomb.Rd: forest.meta forest.netcomparison.Rd: forest.meta forest.netcomplex.Rd: forest.meta forest.netmeta.Rd: forest.meta forest.netsplit.Rd: forest.meta funnel.netmeta.Rd: funnel.meta, metabias metabias.netmeta.Rd: metabias netmeta.Rd: metabin, metacont, metainc, metagen netpairwise.Rd: metagen pairwise.Rd: metabin, metacont, metainc, metagen radial.netmeta.Rd: radial.meta, funnel.meta, metabias smokingcessation.Rd: metabin Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Unknown package ‘hasseDiagram’ in Rd xrefs Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 2.9-0
Check: examples
Result: ERROR Running examples in ‘netmeta-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: netposet > ### Title: Partial order of treatments in network meta-analysis > ### Aliases: netposet print.netposet > > ### ** Examples > > ## Not run: > ##D # Use depression dataset > ##D # > ##D data(Linde2015) > ##D > ##D # Define order of treatments > ##D # > ##D trts <- c("TCA", "SSRI", "SNRI", "NRI", > ##D "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo") > ##D > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission") > ##D > ##D # (1) Early response > ##D # > ##D p1 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(resp1, resp2, resp3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net1 <- netmeta(p1, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # (2) Early remission > ##D # > ##D p2 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(remi1, remi2, remi3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net2 <- netmeta(p2, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # Partial order of treatment rankings (two outcomes) > ##D # > ##D po <- netposet(netrank(net1), netrank(net2), outcomes = outcomes) > ##D > ##D # Hasse diagram > ##D # > ##D hasse(po) > ##D > ##D > ##D # > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission", > ##D "Lost to follow-up", "Lost to follow-up due to AEs", > ##D "Adverse events (AEs)") > ##D > ##D # (3) Loss to follow-up > ##D # > ##D p3 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss1, loss2, loss3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net3 <- netmeta(p3, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (4) Loss to follow-up due to adverse events > ##D # > ##D p4 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss.ae1, loss.ae2, loss.ae3), n = list(n1, n2, n3), > ##D studlab = id, data = subset(Linde2015, id != 55), sm = "OR") > ##D # > ##D net4 <- netmeta(p4, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (5) Adverse events > ##D # > ##D p5 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(ae1, ae2, ae3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net5 <- netmeta(p5, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # Partial order of treatment rankings (all five outcomes) > ##D # > ##D po.ranks <- netposet(netrank(net1), netrank(net2), > ##D netrank(net3), netrank(net4), netrank(net5), outcomes = outcomes) > ##D > ##D # Same result > ##D # > ##D po.nets <- netposet(net1, net2, net3, net4, net5, > ##D outcomes = outcomes) > ##D # > ##D all.equal(po.ranks, po.nets) > ##D > ##D # Print matrix with P-scores (random effects model) > ##D # > ##D po.nets$P.random > ##D > ##D # Hasse diagram for all outcomes (random effects model) > ##D # > ##D hasse(po.ranks) > ##D > ##D # Hasse diagram for outcomes early response and early remission > ##D # > ##D po12 <- netposet(netrank(net1), netrank(net2), > ##D outcomes = outcomes[1:2]) > ##D hasse(po12) > ##D > ##D # Scatter plot > ##D # > ##D oldpar <- par(pty = "s") > ##D plot(po12) > ##D par(oldpar) > ## End(Not run) > > # Example using ranking matrix with P-scores > # > # Ribassin-Majed L, Marguet S, Lee A.W., et al. (2017): > # What is the best treatment of locally advanced nasopharyngeal > # carcinoma? An individual patient data network meta-analysis. > # Journal of Clinical Oncology, 35, 498-505 > # > outcomes <- c("OS", "PFS", "LC", "DC") > treatments <- c("RT", "IC-RT", "IC-CRT", "CRT", + "CRT-AC", "RT-AC", "IC-RT-AC") > # > # P-scores (from Table 1) > # > pscore.os <- c(15, 33, 63, 70, 96, 28, 45) / 100 > pscore.pfs <- c( 4, 46, 79, 52, 94, 36, 39) / 100 > pscore.lc <- c( 9, 27, 47, 37, 82, 58, 90) / 100 > pscore.dc <- c(16, 76, 95, 48, 72, 32, 10) / 100 > # > pscore.matrix <- data.frame(pscore.os, pscore.pfs, pscore.lc, pscore.dc) > rownames(pscore.matrix) <- treatments > colnames(pscore.matrix) <- outcomes > pscore.matrix OS PFS LC DC RT 0.15 0.04 0.09 0.16 IC-RT 0.33 0.46 0.27 0.76 IC-CRT 0.63 0.79 0.47 0.95 CRT 0.70 0.52 0.37 0.48 CRT-AC 0.96 0.94 0.82 0.72 RT-AC 0.28 0.36 0.58 0.32 IC-RT-AC 0.45 0.39 0.90 0.10 > # > po <- netposet(pscore.matrix) > po12 <- netposet(pscore.matrix[, 1:2]) > po RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 1 0 0 0 0 0 0 IC-CRT 0 1 0 0 0 0 0 CRT 1 0 0 0 0 0 0 CRT-AC 0 0 0 1 0 1 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 0 0 > po12 RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 0 0 0 0 0 1 0 IC-CRT 0 1 0 0 0 0 1 CRT 0 1 0 0 0 0 1 CRT-AC 0 0 1 1 0 0 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 1 0 > # > hasse(po) Error: Package 'hasseDiagram' missing. Please use the following R commands for installation: install.packages("BiocManager") BiocManager::install() BiocManager::install("Rgraphviz") install.packages("hasseDiagram") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed Gurusamy2011 9.857 0.102 12.096 Dong2013 7.715 0.058 9.291 netmetabin 7.630 0.012 9.536 netpairwise 7.277 0.024 8.923 netmeasures 7.072 0.020 9.335 forest.netmeta 6.714 0.012 8.476 as.data.frame.netmeta 6.406 0.079 8.475 netmatrix 6.433 0.016 8.624 netmeta 6.394 0.020 9.612 netgraph 6.364 0.008 8.808 invmat 6.355 0.012 7.725 netgraph.netmeta 6.262 0.016 7.451 netdistance 6.246 0.016 7.757 netbind 6.088 0.008 8.618 forest.netcomparison 5.948 0.000 8.424 forest.netbind 5.834 0.016 8.125 netcomb 5.720 0.020 7.174 forest.netcomplex 5.720 0.008 7.082 Franchini2012 5.356 0.075 6.833 netimpact 5.329 0.008 7.326 netgraph.netimpact 5.255 0.047 7.024 netcontrib 5.149 0.008 7.748 forest.netcomb 5.084 0.009 6.824 dietaryfat 4.769 0.027 5.824 netgraph.netcomb 4.751 0.012 5.811 netcomparison 4.702 0.004 5.968 netcomplex 4.675 0.012 6.427 Linde2016 4.640 0.012 5.977 netheat 4.599 0.020 5.580 forest.netsplit 4.128 0.016 5.519 netleague 4.084 0.007 5.205 Flavor: r-devel-linux-x86_64-debian-clang

Version: 2.9-0
Check: examples
Result: ERROR Running examples in ‘netmeta-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: netposet > ### Title: Partial order of treatments in network meta-analysis > ### Aliases: netposet print.netposet > > ### ** Examples > > ## Not run: > ##D # Use depression dataset > ##D # > ##D data(Linde2015) > ##D > ##D # Define order of treatments > ##D # > ##D trts <- c("TCA", "SSRI", "SNRI", "NRI", > ##D "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo") > ##D > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission") > ##D > ##D # (1) Early response > ##D # > ##D p1 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(resp1, resp2, resp3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net1 <- netmeta(p1, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # (2) Early remission > ##D # > ##D p2 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(remi1, remi2, remi3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net2 <- netmeta(p2, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # Partial order of treatment rankings (two outcomes) > ##D # > ##D po <- netposet(netrank(net1), netrank(net2), outcomes = outcomes) > ##D > ##D # Hasse diagram > ##D # > ##D hasse(po) > ##D > ##D > ##D # > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission", > ##D "Lost to follow-up", "Lost to follow-up due to AEs", > ##D "Adverse events (AEs)") > ##D > ##D # (3) Loss to follow-up > ##D # > ##D p3 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss1, loss2, loss3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net3 <- netmeta(p3, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (4) Loss to follow-up due to adverse events > ##D # > ##D p4 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss.ae1, loss.ae2, loss.ae3), n = list(n1, n2, n3), > ##D studlab = id, data = subset(Linde2015, id != 55), sm = "OR") > ##D # > ##D net4 <- netmeta(p4, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (5) Adverse events > ##D # > ##D p5 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(ae1, ae2, ae3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net5 <- netmeta(p5, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # Partial order of treatment rankings (all five outcomes) > ##D # > ##D po.ranks <- netposet(netrank(net1), netrank(net2), > ##D netrank(net3), netrank(net4), netrank(net5), outcomes = outcomes) > ##D > ##D # Same result > ##D # > ##D po.nets <- netposet(net1, net2, net3, net4, net5, > ##D outcomes = outcomes) > ##D # > ##D all.equal(po.ranks, po.nets) > ##D > ##D # Print matrix with P-scores (random effects model) > ##D # > ##D po.nets$P.random > ##D > ##D # Hasse diagram for all outcomes (random effects model) > ##D # > ##D hasse(po.ranks) > ##D > ##D # Hasse diagram for outcomes early response and early remission > ##D # > ##D po12 <- netposet(netrank(net1), netrank(net2), > ##D outcomes = outcomes[1:2]) > ##D hasse(po12) > ##D > ##D # Scatter plot > ##D # > ##D oldpar <- par(pty = "s") > ##D plot(po12) > ##D par(oldpar) > ## End(Not run) > > # Example using ranking matrix with P-scores > # > # Ribassin-Majed L, Marguet S, Lee A.W., et al. (2017): > # What is the best treatment of locally advanced nasopharyngeal > # carcinoma? An individual patient data network meta-analysis. > # Journal of Clinical Oncology, 35, 498-505 > # > outcomes <- c("OS", "PFS", "LC", "DC") > treatments <- c("RT", "IC-RT", "IC-CRT", "CRT", + "CRT-AC", "RT-AC", "IC-RT-AC") > # > # P-scores (from Table 1) > # > pscore.os <- c(15, 33, 63, 70, 96, 28, 45) / 100 > pscore.pfs <- c( 4, 46, 79, 52, 94, 36, 39) / 100 > pscore.lc <- c( 9, 27, 47, 37, 82, 58, 90) / 100 > pscore.dc <- c(16, 76, 95, 48, 72, 32, 10) / 100 > # > pscore.matrix <- data.frame(pscore.os, pscore.pfs, pscore.lc, pscore.dc) > rownames(pscore.matrix) <- treatments > colnames(pscore.matrix) <- outcomes > pscore.matrix OS PFS LC DC RT 0.15 0.04 0.09 0.16 IC-RT 0.33 0.46 0.27 0.76 IC-CRT 0.63 0.79 0.47 0.95 CRT 0.70 0.52 0.37 0.48 CRT-AC 0.96 0.94 0.82 0.72 RT-AC 0.28 0.36 0.58 0.32 IC-RT-AC 0.45 0.39 0.90 0.10 > # > po <- netposet(pscore.matrix) > po12 <- netposet(pscore.matrix[, 1:2]) > po RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 1 0 0 0 0 0 0 IC-CRT 0 1 0 0 0 0 0 CRT 1 0 0 0 0 0 0 CRT-AC 0 0 0 1 0 1 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 0 0 > po12 RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 0 0 0 0 0 1 0 IC-CRT 0 1 0 0 0 0 1 CRT 0 1 0 0 0 0 1 CRT-AC 0 0 1 1 0 0 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 1 0 > # > hasse(po) Error: Package 'hasseDiagram' missing. Please use the following R commands for installation: install.packages("BiocManager") BiocManager::install() BiocManager::install("Rgraphviz") install.packages("hasseDiagram") Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed Gurusamy2011 5.738 0.235 7.152 Dong2013 4.444 0.072 5.654 netmetabin 4.409 0.034 5.345 netpairwise 4.148 0.052 5.218 netmeasures 4.034 0.071 5.113 Franchini2012 3.455 0.087 6.342 Flavor: r-devel-linux-x86_64-debian-gcc

Version: 2.9-0
Check: Rd cross-references
Result: NOTE Undeclared package ‘crossnma’ in Rd xrefs Unknown package ‘hasseDiagram’ in Rd xrefs Flavor: r-devel-linux-x86_64-fedora-clang

Version: 2.9-0
Check: examples
Result: ERROR Running examples in ‘netmeta-Ex.R’ failed The error most likely occurred in: > ### Name: netposet > ### Title: Partial order of treatments in network meta-analysis > ### Aliases: netposet print.netposet > > ### ** Examples > > ## Not run: > ##D # Use depression dataset > ##D # > ##D data(Linde2015) > ##D > ##D # Define order of treatments > ##D # > ##D trts <- c("TCA", "SSRI", "SNRI", "NRI", > ##D "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo") > ##D > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission") > ##D > ##D # (1) Early response > ##D # > ##D p1 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(resp1, resp2, resp3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net1 <- netmeta(p1, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # (2) Early remission > ##D # > ##D p2 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(remi1, remi2, remi3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net2 <- netmeta(p2, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # Partial order of treatment rankings (two outcomes) > ##D # > ##D po <- netposet(netrank(net1), netrank(net2), outcomes = outcomes) > ##D > ##D # Hasse diagram > ##D # > ##D hasse(po) > ##D > ##D > ##D # > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission", > ##D "Lost to follow-up", "Lost to follow-up due to AEs", > ##D "Adverse events (AEs)") > ##D > ##D # (3) Loss to follow-up > ##D # > ##D p3 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss1, loss2, loss3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net3 <- netmeta(p3, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (4) Loss to follow-up due to adverse events > ##D # > ##D p4 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss.ae1, loss.ae2, loss.ae3), n = list(n1, n2, n3), > ##D studlab = id, data = subset(Linde2015, id != 55), sm = "OR") > ##D # > ##D net4 <- netmeta(p4, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (5) Adverse events > ##D # > ##D p5 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(ae1, ae2, ae3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net5 <- netmeta(p5, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # Partial order of treatment rankings (all five outcomes) > ##D # > ##D po.ranks <- netposet(netrank(net1), netrank(net2), > ##D netrank(net3), netrank(net4), netrank(net5), outcomes = outcomes) > ##D > ##D # Same result > ##D # > ##D po.nets <- netposet(net1, net2, net3, net4, net5, > ##D outcomes = outcomes) > ##D # > ##D all.equal(po.ranks, po.nets) > ##D > ##D # Print matrix with P-scores (random effects model) > ##D # > ##D po.nets$P.random > ##D > ##D # Hasse diagram for all outcomes (random effects model) > ##D # > ##D hasse(po.ranks) > ##D > ##D # Hasse diagram for outcomes early response and early remission > ##D # > ##D po12 <- netposet(netrank(net1), netrank(net2), > ##D outcomes = outcomes[1:2]) > ##D hasse(po12) > ##D > ##D # Scatter plot > ##D # > ##D oldpar <- par(pty = "s") > ##D plot(po12) > ##D par(oldpar) > ## End(Not run) > > # Example using ranking matrix with P-scores > # > # Ribassin-Majed L, Marguet S, Lee A.W., et al. (2017): > # What is the best treatment of locally advanced nasopharyngeal > # carcinoma? An individual patient data network meta-analysis. > # Journal of Clinical Oncology, 35, 498-505 > # > outcomes <- c("OS", "PFS", "LC", "DC") > treatments <- c("RT", "IC-RT", "IC-CRT", "CRT", + "CRT-AC", "RT-AC", "IC-RT-AC") > # > # P-scores (from Table 1) > # > pscore.os <- c(15, 33, 63, 70, 96, 28, 45) / 100 > pscore.pfs <- c( 4, 46, 79, 52, 94, 36, 39) / 100 > pscore.lc <- c( 9, 27, 47, 37, 82, 58, 90) / 100 > pscore.dc <- c(16, 76, 95, 48, 72, 32, 10) / 100 > # > pscore.matrix <- data.frame(pscore.os, pscore.pfs, pscore.lc, pscore.dc) > rownames(pscore.matrix) <- treatments > colnames(pscore.matrix) <- outcomes > pscore.matrix OS PFS LC DC RT 0.15 0.04 0.09 0.16 IC-RT 0.33 0.46 0.27 0.76 IC-CRT 0.63 0.79 0.47 0.95 CRT 0.70 0.52 0.37 0.48 CRT-AC 0.96 0.94 0.82 0.72 RT-AC 0.28 0.36 0.58 0.32 IC-RT-AC 0.45 0.39 0.90 0.10 > # > po <- netposet(pscore.matrix) > po12 <- netposet(pscore.matrix[, 1:2]) > po RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 1 0 0 0 0 0 0 IC-CRT 0 1 0 0 0 0 0 CRT 1 0 0 0 0 0 0 CRT-AC 0 0 0 1 0 1 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 0 0 > po12 RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 0 0 0 0 0 1 0 IC-CRT 0 1 0 0 0 0 1 CRT 0 1 0 0 0 0 1 CRT-AC 0 0 1 1 0 0 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 1 0 > # > hasse(po) Error: Package 'hasseDiagram' missing. Please use the following R commands for installation: install.packages("BiocManager") BiocManager::install() BiocManager::install("Rgraphviz") install.packages("hasseDiagram") Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 2.9-0
Check: Rd cross-references
Result: NOTE Unknown package ‘hasseDiagram’ in Rd xrefs Flavors: r-devel-linux-x86_64-fedora-gcc, r-release-linux-x86_64

Version: 2.9-0
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: Baker2009.Rd: metabin Dogliotti2014.Rd: metabin Dong2013.Rd: metabin Franchini2012.Rd: metacont Gurusamy2011.Rd: metabin Linde2015.Rd: metabin Stowe2010.Rd: metacont Woods2010.Rd: metabin dietaryfat.Rd: metainc forest.netbind.Rd: forest.meta forest.netcomb.Rd: forest.meta forest.netcomparison.Rd: forest.meta forest.netcomplex.Rd: forest.meta forest.netmeta.Rd: forest.meta forest.netsplit.Rd: forest.meta funnel.netmeta.Rd: funnel.meta, metabias metabias.netmeta.Rd: metabias netmeta.Rd: metabin, metacont, metainc, metagen netpairwise.Rd: metagen pairwise.Rd: metabin, metacont, metainc, metagen radial.netmeta.Rd: radial.meta, funnel.meta, metabias smokingcessation.Rd: metabin Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavor: r-devel-windows-x86_64

Version: 2.9-0
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘hasseDiagram’ Flavor: r-release-linux-x86_64

Version: 2.9-0
Check: examples
Result: ERROR Running examples in ‘netmeta-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: netposet > ### Title: Partial order of treatments in network meta-analysis > ### Aliases: netposet print.netposet > > ### ** Examples > > ## Not run: > ##D # Use depression dataset > ##D # > ##D data(Linde2015) > ##D > ##D # Define order of treatments > ##D # > ##D trts <- c("TCA", "SSRI", "SNRI", "NRI", > ##D "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo") > ##D > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission") > ##D > ##D # (1) Early response > ##D # > ##D p1 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(resp1, resp2, resp3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net1 <- netmeta(p1, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # (2) Early remission > ##D # > ##D p2 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(remi1, remi2, remi3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net2 <- netmeta(p2, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "undesirable") > ##D > ##D # Partial order of treatment rankings (two outcomes) > ##D # > ##D po <- netposet(netrank(net1), netrank(net2), outcomes = outcomes) > ##D > ##D # Hasse diagram > ##D # > ##D hasse(po) > ##D > ##D > ##D # > ##D # Outcome labels > ##D # > ##D outcomes <- c("Early response", "Early remission", > ##D "Lost to follow-up", "Lost to follow-up due to AEs", > ##D "Adverse events (AEs)") > ##D > ##D # (3) Loss to follow-up > ##D # > ##D p3 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss1, loss2, loss3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net3 <- netmeta(p3, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (4) Loss to follow-up due to adverse events > ##D # > ##D p4 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(loss.ae1, loss.ae2, loss.ae3), n = list(n1, n2, n3), > ##D studlab = id, data = subset(Linde2015, id != 55), sm = "OR") > ##D # > ##D net4 <- netmeta(p4, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # (5) Adverse events > ##D # > ##D p5 <- pairwise(treat = list(treatment1, treatment2, treatment3), > ##D event = list(ae1, ae2, ae3), n = list(n1, n2, n3), > ##D studlab = id, data = Linde2015, sm = "OR") > ##D # > ##D net5 <- netmeta(p5, common = FALSE, > ##D seq = trts, ref = "Placebo", small.values = "desirable") > ##D > ##D # Partial order of treatment rankings (all five outcomes) > ##D # > ##D po.ranks <- netposet(netrank(net1), netrank(net2), > ##D netrank(net3), netrank(net4), netrank(net5), outcomes = outcomes) > ##D > ##D # Same result > ##D # > ##D po.nets <- netposet(net1, net2, net3, net4, net5, > ##D outcomes = outcomes) > ##D # > ##D all.equal(po.ranks, po.nets) > ##D > ##D # Print matrix with P-scores (random effects model) > ##D # > ##D po.nets$P.random > ##D > ##D # Hasse diagram for all outcomes (random effects model) > ##D # > ##D hasse(po.ranks) > ##D > ##D # Hasse diagram for outcomes early response and early remission > ##D # > ##D po12 <- netposet(netrank(net1), netrank(net2), > ##D outcomes = outcomes[1:2]) > ##D hasse(po12) > ##D > ##D # Scatter plot > ##D # > ##D oldpar <- par(pty = "s") > ##D plot(po12) > ##D par(oldpar) > ## End(Not run) > > # Example using ranking matrix with P-scores > # > # Ribassin-Majed L, Marguet S, Lee A.W., et al. (2017): > # What is the best treatment of locally advanced nasopharyngeal > # carcinoma? An individual patient data network meta-analysis. > # Journal of Clinical Oncology, 35, 498-505 > # > outcomes <- c("OS", "PFS", "LC", "DC") > treatments <- c("RT", "IC-RT", "IC-CRT", "CRT", + "CRT-AC", "RT-AC", "IC-RT-AC") > # > # P-scores (from Table 1) > # > pscore.os <- c(15, 33, 63, 70, 96, 28, 45) / 100 > pscore.pfs <- c( 4, 46, 79, 52, 94, 36, 39) / 100 > pscore.lc <- c( 9, 27, 47, 37, 82, 58, 90) / 100 > pscore.dc <- c(16, 76, 95, 48, 72, 32, 10) / 100 > # > pscore.matrix <- data.frame(pscore.os, pscore.pfs, pscore.lc, pscore.dc) > rownames(pscore.matrix) <- treatments > colnames(pscore.matrix) <- outcomes > pscore.matrix OS PFS LC DC RT 0.15 0.04 0.09 0.16 IC-RT 0.33 0.46 0.27 0.76 IC-CRT 0.63 0.79 0.47 0.95 CRT 0.70 0.52 0.37 0.48 CRT-AC 0.96 0.94 0.82 0.72 RT-AC 0.28 0.36 0.58 0.32 IC-RT-AC 0.45 0.39 0.90 0.10 > # > po <- netposet(pscore.matrix) > po12 <- netposet(pscore.matrix[, 1:2]) > po RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 1 0 0 0 0 0 0 IC-CRT 0 1 0 0 0 0 0 CRT 1 0 0 0 0 0 0 CRT-AC 0 0 0 1 0 1 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 0 0 > po12 RT IC-RT IC-CRT CRT CRT-AC RT-AC IC-RT-AC RT 0 0 0 0 0 0 0 IC-RT 0 0 0 0 0 1 0 IC-CRT 0 1 0 0 0 0 1 CRT 0 1 0 0 0 0 1 CRT-AC 0 0 1 1 0 0 0 RT-AC 1 0 0 0 0 0 0 IC-RT-AC 0 0 0 0 0 1 0 > # > hasse(po) Error: Package 'hasseDiagram' missing. Please use the following R commands for installation: install.packages("BiocManager") BiocManager::install() BiocManager::install("Rgraphviz") install.packages("hasseDiagram") Execution halted Flavor: r-release-linux-x86_64