CRAN Package Check Results for Package lcpm

Last updated on 2025-01-21 11:48:25 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.1 6.87 58.54 65.41 NOTE
r-devel-linux-x86_64-debian-gcc 0.1.1 5.03 43.01 48.04 NOTE
r-devel-linux-x86_64-fedora-clang 0.1.1 102.77 NOTE
r-devel-linux-x86_64-fedora-gcc 0.1.1 96.40 NOTE
r-devel-windows-x86_64 0.1.1 8.00 74.00 82.00 NOTE
r-patched-linux-x86_64 0.1.1 7.04 54.21 61.25 NOTE
r-release-linux-x86_64 0.1.1 5.33 55.11 60.44 NOTE
r-release-macos-arm64 0.1.1 32.00 NOTE
r-release-macos-x86_64 0.1.1 78.00 NOTE
r-release-windows-x86_64 0.1.1 7.00 75.00 82.00 NOTE
r-oldrel-macos-arm64 0.1.1 37.00 NOTE
r-oldrel-macos-x86_64 0.1.1 54.00 NOTE
r-oldrel-windows-x86_64 0.1.1 8.00 85.00 93.00 NOTE

Check Details

Version: 0.1.1
Check: Rd files
Result: NOTE checkRd: (-1) lcpm.Rd:52: Lost braces; missing escapes or markup? 52 | \code{lcpm} provides the maximum likelihood estimate for ordinal outcomes (J>2 categories) and a Generalized Linear Model (GLM) with the log link without the assumption of proportionality. That is, lcpm determines the MLE for log[P(y <= j)]= cut_j + X beta_j subject to [cut_{j-1} + X beta_{j-1} <= cut_j + X beta_j] and [cut_j + X beta_j <=0]. This implementation uses \code{\link{constrOptim}} to determine the MLE and so the results account for the restricted parameter space. | ^ checkRd: (-1) lcpm.Rd:52: Lost braces; missing escapes or markup? 52 | \code{lcpm} provides the maximum likelihood estimate for ordinal outcomes (J>2 categories) and a Generalized Linear Model (GLM) with the log link without the assumption of proportionality. That is, lcpm determines the MLE for log[P(y <= j)]= cut_j + X beta_j subject to [cut_{j-1} + X beta_{j-1} <= cut_j + X beta_j] and [cut_j + X beta_j <=0]. This implementation uses \code{\link{constrOptim}} to determine the MLE and so the results account for the restricted parameter space. | ^ checkRd: (-1) ppm.Rd:51: Lost braces; missing escapes or markup? 51 | \code{ppm} provides the maximum likelihood estimate for ordinal outcomes (J>2 categories) and a Generalized Linear Model with the log link with the assumption of proportionality. That is, ppm determines the MLE for log[P(y <= j)]= cut_j + X beta subject to [cut_{j-1} <= cut_j ] and [cut_j + X beta <=0]. This implementation uses \code{\link{constrOptim}} to determine the MLE and so the results should correctly account for the restricted parameter space. A proposed test for proportionality is included in \code{\link{lcpm}}. | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64

Version: 0.1.1
Check: LazyData
Result: NOTE 'LazyData' is specified without a 'data' directory Flavors: r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64