Last updated on 2025-04-19 12:49:26 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.9.1 | 11.12 | 99.46 | 110.58 | NOTE | |
r-devel-linux-x86_64-debian-gcc | 1.9.1 | 8.06 | 70.17 | 78.23 | NOTE | |
r-devel-linux-x86_64-fedora-clang | 1.9.1 | 174.23 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 1.9.1 | 167.29 | NOTE | |||
r-devel-windows-x86_64 | 1.9.1 | 14.00 | 120.00 | 134.00 | NOTE | |
r-patched-linux-x86_64 | 1.9.1 | 11.63 | 94.37 | 106.00 | NOTE | |
r-release-linux-x86_64 | 1.9.1 | 11.32 | 95.30 | 106.62 | NOTE | |
r-release-macos-arm64 | 1.9.1 | 58.00 | NOTE | |||
r-release-macos-x86_64 | 1.9.1 | 94.00 | NOTE | |||
r-release-windows-x86_64 | 1.9.1 | 14.00 | 117.00 | 131.00 | NOTE | |
r-oldrel-macos-arm64 | 1.9.1 | 49.00 | NOTE | |||
r-oldrel-macos-x86_64 | 1.9.1 | 80.00 | NOTE | |||
r-oldrel-windows-x86_64 | 1.9.1 | 17.00 | 143.00 | 160.00 | NOTE |
Version: 1.9.1
Check: Rd files
Result: NOTE
checkRd: (-1) ivmodel.Rd:37: Lost braces
37 | and produces statistics for \eqn{\beta}. In particular, \code{ivmodel} computes the OLS, TSLS, k-class, limited information maximum likelihood (LIML), and Fuller-k (Fuller 1977) estimates of \eqn{\beta} using \code{KClass}, \code{LIML}, and code{Fuller}. Also, \code{ivmodel} computes confidence intervals and hypothesis tests of the type \eqn{H_0: \beta = \beta_0} versus \eqn{H_0: \beta \neq \beta_0} for the said estimators as well as two weak-IV confidence intervals, Anderson and Rubin (Anderson and Rubin 1949) confidence interval (Anderson and Rubin 1949) and the conditional likelihood ratio confidence interval (Moreira 2003). Finally, the code also conducts a sensitivity analysis if \eqn{Z} is one-dimensional (i.e. there is only one instrument) using the method in Jiang et al. (2015).
| ^
checkRd: (-1) ivmodelFormula.Rd:42: Lost braces
42 | and produces statistics for \eqn{\beta}. In particular, \code{ivmodel} computes the OLS, TSLS, k-class, limited information maximum likelihood (LIML), and Fuller-k (Fuller 1977) estimates of \eqn{\beta} using \code{KClass}, \code{LIML}, and code{Fuller}. Also, \code{ivmodel} computes confidence intervals and hypothesis tests of the type \eqn{H_0: \beta = \beta_0} versus \eqn{H_0: \beta \neq \beta_0} for the said estimators as well as two weak-IV confidence intervals, Anderson and Rubin (Anderson and Rubin 1949) confidence interval (Anderson and Rubin 1949) and the conditional likelihood ratio confidence interval (Moreira 2003). Finally, the code also conducts a sensitivity analysis if \eqn{Z} is one-dimensional (i.e. there is only one instrument) using the method in Jiang et al. (2015).
| ^
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64