CRAN Package Check Results for Package GeoModels

Last updated on 2025-01-12 10:48:21 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 2.0.9 54.09 205.23 259.32 OK
r-devel-linux-x86_64-debian-gcc 2.0.9 36.70 138.86 175.56 OK
r-devel-linux-x86_64-fedora-clang 2.0.9 439.85 OK
r-devel-linux-x86_64-fedora-gcc 2.0.9 371.00 ERROR
r-devel-windows-x86_64 2.0.9 61.00 244.00 305.00 OK
r-patched-linux-x86_64 2.0.8 58.56 196.30 254.86 OK
r-release-linux-x86_64 2.0.9 56.75 199.37 256.12 OK
r-release-macos-arm64 2.0.9 100.00 NOTE
r-release-macos-x86_64 2.0.9 311.00 NOTE
r-release-windows-x86_64 2.0.9 65.00 221.00 286.00 OK
r-oldrel-macos-arm64 2.0.9 12.00 ERROR
r-oldrel-macos-x86_64 2.0.9 13.00 ERROR
r-oldrel-windows-x86_64 2.0.9 32.00 8.00 40.00 ERROR

Additional issues

clang-ASAN gcc-UBSAN LTO valgrind

Check Details

Version: 2.0.9
Check: examples
Result: ERROR Running examples in ‘GeoModels-Ex.R’ failed The error most likely occurred in: > ### Name: GeoKrig > ### Title: Spatial (bivariate) and spatio temporal optimal linear > ### prediction for Gaussian and non Gaussian random fields. > ### Aliases: GeoKrig > ### Keywords: Composite > > ### ** Examples > > > library(GeoModels) > ################################################################ > ########### Examples of spatial kriging ############ > ################################################################ > > ################################################################ > ### > ### Example 1. Spatial kriging of a > ### Gaussian random fields with Gen wendland correlation. > ### > ################################################################ > > model="Gaussian" > set.seed(79) > x = runif(300, 0, 1) > y = runif(300, 0, 1) > coords=cbind(x,y) > # Set the exponential cov parameters: > corrmodel = "GenWend" > mean=0; sill=5; nugget=0 > scale=0.2;smooth=0;power2=4 > > param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2) > > # Simulation of the spatial Gaussian random field: > data = GeoSim(coordx=coords, corrmodel=corrmodel, + param=param)$data > > ## estimation with pairwise likelihood > fixed=list(nugget=nugget,smooth=0,power2=power2) > start=list(mean=0,scale=scale,sill=1) > I=Inf > lower=list(mean=-I,scale=0,sill=0) > upper=list(mean= I,scale=I,sill=I) > # Maximum pairwise likelihood fitting : > fit = GeoFit(data, coordx=coords, corrmodel=corrmodel,model=model, + likelihood='Marginal', type='Pairwise',neighb=3, + optimizer="nlminb", lower=lower,upper=upper, + start=start,fixed=fixed) > > # locations to predict > xx=seq(0,1,0.03) > loc_to_pred=as.matrix(expand.grid(xx,xx)) > > ## first option > #param=append(fit$param,fit$fixed) > #pr=GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel=corrmodel, > # model=model,param=param,data=data,mse=TRUE) > > ## second option using object GeoFit > pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) > > > colour = rainbow(100) > > opar=par(no.readonly = TRUE) > par(mfrow=c(1,3)) > quilt.plot(coords,data,col=colour) > # simple kriging map prediction > image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, + xlab="",ylab="", + main=" Kriging ") > > # simple kriging MSE map prediction variance > image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, + xlab="",ylab="",main="Std error") > par(opar) > > ################################################################ > ### > ### Example 2. Spatial kriging of a Skew > ### Gaussian random fields with Matern correlation. > ### > ################################################################ > model="SkewGaussian" > set.seed(79) > x = runif(300, 0, 1) > y = runif(300, 0, 1) > coords=cbind(x,y) > # Set the exponential cov parameters: > corrmodel = "Matern" > mean=0 > sill=2 > nugget=0 > scale=0.1 > smooth=0.5 > skew=3 > param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,skew=skew) > > # Simulation of the spatial skew Gaussian random field: > data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model, + param=param)$data > > fixed=list(nugget=nugget,smooth=smooth) > start=list(mean=0,scale=scale,sill=1,skew=skew) > I=Inf > lower=list(mean=-I,scale=0,sill=0,skew=-I) > upper=list(mean= I,scale=I,sill=I,skew=I) > # Maximum pairwise likelihood fitting : > fit = GeoFit2(data, coordx=coords, corrmodel=corrmodel,model=model, + likelihood='Marginal', type='Pairwise',neighb=3, + optimizer="nlminb", lower=lower,upper=upper, + start=start,fixed=fixed) > > # locations to predict > xx=seq(0,1,0.03) > loc_to_pred=as.matrix(expand.grid(xx,xx)) > ## optimal linear kriging > pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) > > colour = rainbow(100) > > opar=par(no.readonly = TRUE) > par(mfrow=c(1,3)) > quilt.plot(coords,data,col=colour) > # simple kriging map prediction > image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, + xlab="",ylab="", + main=" Kriging ") > > # simple kriging MSE map prediction variance > image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, + xlab="",ylab="",main="Std error") > par(opar) > > ################################################################ > ### > ### Example 3. Spatial kriging of a > ### Gamma random field with mean spatial regression > ### > ############################################################### > set.seed(312) > model="Gamma" > corrmodel = "GenWend" > # Define the spatial-coordinates of the points: > NN=300 > coords=cbind(runif(NN),runif(NN)) > ## matrix covariates > a0=rep(1,NN) > a1=runif(NN,0,1) > X=cbind(a0,a1) > ##Set model parameters > shape=2 > ## regression parameters > mean = 1;mean1= -0.2 > # correlation parameters > nugget = 0;power2=4 > scale = 0.3;smooth=0 > > ## simulation > param=list(shape=shape,nugget=nugget,mean=mean,mean1=mean1, + scale=scale,power2=power2,smooth=smooth) > data = GeoSim(coordx=coords,corrmodel=corrmodel, param=param, + model=model,X=X)$data > > #####starting and fixed parameters > fixed=list(nugget=nugget,power2=power2,smooth=smooth) > start=list(mean=mean,mean1=mean1, scale=scale,shape=shape) > > ## estimation with pairwise likelihood > fit2 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel,X=X, + neighb=3,likelihood="Conditional",type="Pairwise", + start=start,fixed=fixed, model = model) > > # locations to predict with associated covariates > xx=seq(0,1,0.03) > loc_to_pred=as.matrix(expand.grid(xx,xx)) > NP=nrow(loc_to_pred) > a0=rep(1,NP) > a1=runif(NP,0,1) > Xloc=cbind(a0,a1) > > #optimal linear kriging > pr=GeoKrig(fit2,loc=loc_to_pred,Xloc=Xloc,sparse=TRUE,mse=TRUE) > > ## map > opar=par(no.readonly = TRUE) > par(mfrow=c(1,3)) > quilt.plot(coords,data,main="Data") > map=matrix(pr$pred,ncol=length(xx)) > mapmse=matrix(pr$mse,ncol=length(xx)) > image.plot(xx, xx, map, + xlab="",ylab="",main="Kriging ") > > image.plot(xx, xx, mapmse, + xlab="",ylab="",main="MSE") > par(opar) > > > ################################################################ > ########### Examples of spatio temporal kriging ############ > ################################################################ > > ################################################################ > ### > ### Example 4. Spatio temporal simple kriging of n locations > ### sites and m temporal instants for a Gaussian random fields > ### with estimated double Wendland correlation. > ### > ############################################################### > model="Gaussian" > # Define the spatial-coordinates of the points: > x = runif(300, 0, 1) > y = runif(300, 0, 1) > coords=cbind(x,y) > times=1:4 > > # Define model correlation modek and associated parameters > corrmodel="Wend0_Wend0" > param=list(nugget=0,mean=0,power2_s=4,power2_t=4, + scale_s=0.2,scale_t=2,sill=1) > > # Simulation of the space time Gaussian random field: > set.seed(31) > data=GeoSim(coordx=coords,coordt=times,corrmodel=corrmodel,sparse=TRUE, + param=param)$data *** caught segfault *** address 0x1, cause 'memory not mapped' Traceback: 1: StartParam(coords[, 1], coords[, 2], coordz, coordt, coordx_dyn, corrmodel, NULL, distance, "Simulation", NULL, grid, NULL, maxdist, NULL, maxtime, model, n, param, NULL, NULL, radius, NULL, taper, tapsep, type, type, FALSE, copula, X, FALSE, FALSE) 2: GeoCovmatrix(coordx = coordx, coordy = coordy, coordz = coordz, coordt = coordt, coordx_dyn = coordx_dyn, corrmodel = corrmodel, distance = distance, grid = grid, model = "Gaussian", n = n, param = append(mc, pc), anisopars = anisopars, radius = radius, sparse = sparse, copula = NULL, X = X) 3: GeoSim(coordx = coords, coordt = times, corrmodel = corrmodel, sparse = TRUE, param = param) An irrecoverable exception occurred. R is aborting now ... Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 2.0.9
Check: installed package size
Result: NOTE installed size is 5.2Mb sub-directories of 1Mb or more: data 1.9Mb libs 2.0Mb Flavors: r-release-macos-arm64, r-release-macos-x86_64

Version: 2.0.9
Check: whether package can be installed
Result: ERROR Installation failed. Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64