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Abstract. 

In queue phenomena, it is interesting to know the waiting time or the mean number of customers in 
queue knowing that queue exists. The results derived in this paper can be used in any basic 
markovian model.

1 Introduction.

In many books about queueing theory, the waiting time in a queue or the mean number of customers
in queue knowing that queue exists is omitted or not completely developed [GROSS2008], 
[SIXTO2004], [MEDHI2003].

In this paper a complete framework for several basic markovian models is developed. Following the
definition of the nomenclature used, several definitions and auxiliary theorems will be developed in 
the Queueing Metrics section to be used in the main section of this paper. 

After this, a complete compendium of formulas for the mean number of customers in queue when 
queue exists (denoted by Lqq) and for the mean number of time in queue when queue exists (denoted
by Wqq) will be obtained and those results will be checked using the R software package queueing. 

Finally, the acknowledgments and references sections close this paper.
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2 Queueing Metrics.
Using the nomenclature given in [SIXTO2004], and reviewing the following generic and basic 
queueing model:

Illustration 1

let

 λ = arrival rate of customers to the system,
 Z = mean time between successive arrivals of customers to the system,
 μ = service rate,
 c = number of channels of the server (for example, in illustration 1, the server has three identical 
channels)
 = throughput of the system or rate of completion of the system.

 K = capacity of the system, consisting of maximum number of available positions in queue and in 
the server (In illustration 1, the capacity of the system is six positions: three positions in queue and 
three positions in the server).
 m = size of population. It takes a finite value and it is represented if the calling population is finite.
 Nq = random variable representing the number of customers in queue.
 Lq = mean number of customers in queue.
 Ls = mean number of customers in service.
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 L = Mean number of customers in the system (in queue or receiving service).
 q = Random variable representing time spent in queue.
 Wq = Mean time in queue.
 Ws = Mean time in service. 
 W = Mean time in system (including both mean time in queue and in service).
 
Observe that in each line for the Nq, Lq, q and Wq metrics, the random variables are situated at top of 
the line and the mean of that random variables are situated under the line.

In addition to the metrics represented in the illustration 1, the following metrics also will be used in 
the paper:

  ρ = server use or utilization,
  πi = probability of i customers in the system,
  qi = probability that an input customer (that is, that effectively enters in the system because the 
system has not reached their maximum capacity) finds i customers.  
  Lqq = mean number of customers in queue when queue exists.
  Wqq = mean waiting time in queue when queue exists.

With these nomenclature,

Definition 11: The probability that the number of customers in queue are greater than zero, can be 
defined as

P[Nq  0] = c1 c2 ... = ∑
i=1

∞

ci

This follows because the number of people waiting in queue will be greater than zero when the 
system has c+1, or c+2, ... customers in the system, or equivalently, when there are more customers
than channels.

■

Definition 2: The probability that time spent in queue is greater than zero, can be defined as

P[q  0 ]= qc qc1 ... = ∑
i=0

∞

qci

This follows because time spent in queue will be greater than zero when an arrival see the c, or c+1,
or ... customers in the system, or equivalently, when an arrival see all channels busy.

■

Theorem 1. As show in [SIXTO2004],  Wqq and Lqq are defined:

W qq = E [q ∣ q  0] =
W q

P [q  0]
, and Lqq = E [N q∣N q 0] =

Lq

P[N q  0]
.

1 Thanks to See Chuen-Teck who inspired me giving me a complete formula for Lqq in the M/M/c model.
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Proof:

W q = E[q ] = E[q ∣q = 0 ]⋅P[q = 0 ] E[q ∣ q  0]⋅P[q  0] .

Because E[q ∣q = 0 ] = 0 , and naming W qq = E [q ∣ q  0] , it follows

W q = W qq⋅P [q  0] ⇔ W qq =
W q

P[q  0 ]
.

In a similar way,

Lq = E [N q] = E [N q∣ Nq = 0]⋅P [N q= 0] E[Nq ∣N q 0 ]⋅P[Nq  0] .

Because E[Nq ∣N q= 0] = 0 , and naming Lqq = E [N q∣N q 0] , it follows,

Lq = Lqq⋅P [Nq > 0] ⇔ Lqq =
Lq

P[N q > 0]
.

■

Theorem 2. For the model M/M/c/K/m (m > K > c), 

 qn =
m− nn

m− L − K m − K 

Proof:

Using the definition of qn given in [MEDHI2003], pag. 80, eq. 3.3.7,

qn =
P [anarrival ocurring ∣ system withn customers]⋅n

∑
i=0

K−1

P [anarrival ocurring ∣ system withi customers ]⋅ i

and taking note that, because the arrivals are distributed as Poisson, denoting h as an infinitesimal 
period of time and o(h) as a function of h that converges to zero more rapidly than h,

oh
h

 0 as h  0 , then from

lim
h0

P [anarrival ocurring ∣ system withi customers] = {m− i ⋅⋅h  oh} , it follows
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qn = lim
h0

{m − nho h}n

∑
i=0

K−1

{m− i ho h}i

=
m − nn

∑
i=0

K−1

mi − ∑
i=0

K−1

i i

=

m− nn

m1 −K  − L− K K 
= =

m− nn

[m 1 −K  − L− K K ]
=

m− nn

m1− K  − L− K K 
=

m− nn

m− L − K m − K 
■

Theorem 3. For the model M/M/c/K/m (m > K > c),  =  [m− L   K m − K ] . 

Proof:

To obtain it, observe that in all finite markovian models, the throughput is lambda (arrival rate) 
times the denominator of the qn.

■

Corollary 1: The Little's Law for the model M/M/c/K/m has an interesting interpretation.



=  Z = [m− L   K m− K ] ⇔

Z  L K K = m K m = m1 K  ⇔

m =
Z

1 K 


L
1 K 

 K
K

1 K 

The first term represents the number of customers in the source, the second represents the number 
of customers in the system (in queue or receiving service), and the last term represents the rejected 
customers because the lack of space. Because, 0   K  1 , each one of the terms are reduced
by the factor 1 K  .

When K ≃ 0 , m ≃ Z  L , and when K ≃ 1 , m ≃
Z  L K

2
.

Observe that in the case of m = K, the model is M/M/c/K/K, and consequently,



=  Z = [K − L] ⇔

K = Z  L

that is, K is the sum of the mean number customers in the source and the mean number of customers
in the system, according with the formula of the page 417 of [SIXTO2004].
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Theorem 4: For model M/M/c/K, naming u =



 and  =
u
c
=



⋅c
, then

c j

c
= 

j
, 0  j  K − c .

Proof:

For j = 0, the proof is trivial.
For j > 0, and knowing that the stationary probabilities when n > c are defined as:

n =
un

c!cn−c0 , it follows

 c j

c
=

uc j

c!c j 0

uc

c!
0

=
u j

c j = 
j .

■

3 Little's Law incarnation for basic markovian models where 
queue exists .

Main Theorem: For models
• M/M/1,
• M/M/c,
• M/M/1/K (K > 1),
• M/M/c/K (K > c),
• M/M/1/K/K (K > 1),  
• M/M/c/K/K (K > c) and 
• M/M/c/K/m (m > K > c),   

P [N q 0]

P [q  0]
= 

Proof:

Using Definition 1 and Definition 2, 

P [N q 0]

P [q  0]
=
 c1c2 ...

qc qc1 ...

In the case of a M/M/1 model, 1 = q1 by the PASTA property, so

 
P [N q 0]

P [q  0]
=
2 3  ...

1 2  ...
=

1 −0−1

1 −0

= 1−
1


= 1 −

1 − 


=  .
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Observe that in this model,

 i1

 i

=
1− i1

1 − i
=  , for i ≥ 0 . This result can also be seen in [MEDHI2003], pag. 

66.
□

In case of a M/M/c model, the PASTA property also holds, so

P [N q 0]
P [q  0]

=
 c1c2 ...
cc1 ...

=
P[N  c1]

P[N  c]
=

c1

1−
c

1−

=
c1

c

=

rc1
0

c!⋅c
rc
0

c!

=
r
c
= 

This result, obtained here as ci = ci1 ,  i ≥ 0 , has also been noted in [MEDHI2003] 
pag. 85.

□

For the model M/M/c/K/K,

P [N q 0]

P [q  0]
=
 c1c2 ... K

qc qc1 ...  qK−1
. If 

P [N q 0]

P [q  0]
=  , then the following expression 

has to be true:

 c1 c2 ... K

qc qc1 ...  qK−1

=  ⇔ c1c2 ... K = ⋅qc qc1 ... qK−1 .

That is,

c1 c2  ... K = ⋅qc  qc1 ...  qK−1 = qc  qc1 ... qK−1 .

The goal is to show that c1 = qc , c2 = qc1 , ..., K = qK−1 (1).

In this model, q i =
K − i⋅ i

K − L
, and for i = c, ..., K, the probabilities are defined as:

 i =
i!

c!⋅c i−c Ki 

 

i

0 and finally,  =


c⋅
⋅K − L  . Then,

q i = ⋅
K − i ⋅i

K − L
=



c⋅
⋅K − L⋅

K − i
K − L

⋅
i!

c!⋅ci−c Ki 

 

i

0 =

=


c⋅
⋅K − i ⋅

i!
c!⋅c i−c Ki 


 

i

0 =
K − i

c
⋅

i!
c!⋅c i−c Ki 


 

i1

0 =

=
K − i

c
⋅

i!
c!⋅c i−c   

i1

⋅
K !

K−i!⋅i!
⋅0 =

K − i 
c

⋅
i!

c!⋅ci−c   
i1

⋅
K!

K−i⋅K−i1!⋅i!
⋅0 =
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=
K − i

c
⋅

i!
c!⋅c i−c   

i1

⋅
K !

K−i⋅K−i1!⋅i!
⋅0 =

i1!

c!⋅c i1−c   
i1

⋅ K
i1⋅0 = i1

The model M/M/1/K/K is a special case of the model M/M/c/K/K by setting c = 1.
□

For the model M/M/c/K/m, the goal is to show that (1) also holds.

q i =
 [m− L −  K m− K ]

c

m− i  i

m− L −  K m− K 
=



c
m− i i =

=


c
m− i 

i!
c!ci−c mi 



 
i

0 =   
i1

i!
c!c i1−c m− i 

m!
i!m− i !

0 =

=   
i1

i!

c!ci1−c m− i 
m!

i!m− i [m− i 1]!
0 =

=   
i1

i!

c!c i1−c

m!
i![m− i 1]!

i  1
i  1

0 =

=   
i1
i1!

c!ci1−c

m!
i  1![m− i  1]!

0 =  
i1
i1!

c!c i1−c  m
i  10 = i1

□

In the case of the M/M/c/K model, recalling that

q i =
 i

1−K
, 0  i  K − 1 , it follows

P [N q 0]

P [q  0]
=
 c1c2 ... K

qc qc1 ...  qK−1

=
c1c2 ... K

c

1−K


c1

1−K

 ...
 K−1

1−K

=

= 1− K
c1 c2 ... K

c c1  ... K−1
.

Now, naming u =



and  =
u
c
=



⋅c
, and using Theorem 4, we have

1−K 
 c1c2 ... K

 cc1 ... K−1

= 1−K 

c1

c


c2

c

 ...
K

c

c

c


c1

c

 ... 
 K−1

c

=

= 1− K
 

2
 ... K

12
 ... K−1 , where c 0 has been assumed. 

The formula for the sum of the n first terms of a geometric series is:

Sn =
a1

1−t
⋅1−tn

 , where a1 is the 1st term of the series, and t is the rate of growth of the 
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series. Identifying terms,

1−K 
  

2
 ... K

1 2
 ... K−1 = 1−K 


1−

⋅1−K


1
1−

⋅1−K


= 1−K ⋅ =  .

Recall that in one of the previous steps, c 0 has been assumed.

It can be show that (1) also holds for this model, so the previous requirement is not really important.

q i = 1 −K ⋅
u
c

i

1−K

=
u
c
 i =

u
c
⋅

u i

c!⋅c i−c⋅0 =
ui1

c!⋅ci1−c⋅0 = i1

The M/M/1/K model is a special case of the model M/M/c/K by setting c = 1.

■

Corollary2. For the models of the Main Theorem , Lqq = c⋅⋅W qq .

Proof.

Using the formula of Theorem 1, then, W q = W qq⋅P [q  0] and Lq = Lqq⋅P [N q 0] .

By virtue of Little's Law,  =
Lq

W q

=
Lqq

W qq

P[Nq  0]

P[q  0 ]
, by Main Theorem,  =

Lqq

W qq

 . 

Finally, by definition,  =


c⋅
.

Then, 
Lqq = c⋅⋅W qq . 

This formula is the incarnation of the Little's Law for the phenomena of queue when queue exists.

Corollary. For the models of the Main Theorem,

q i = i1 , ∀ i ≥ c

Proof. 

It is derived by each model in the proof of the Main Theorem.

2 Thanks to See Chuen-Teck (see_chuenteck@yahoo.com.sg) for give me an intuitive justification of why this should 
be.
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4 Lqq and Wqq formulas for Basic Markovian Models

In the proof of the Main Theorem, some interesting results has been obtained and in consequence, 
some closed expressions can be given here, in addition to some formulas already derived in the 
bibliography. The formulas marked as (*) are derived in [SIXTO2004].

Model M/M/1:

Lqq =
Lq

P[N q 0]
=


2

1 − ⋅P[N  2]
=


2

1− ⋅2 =
1

1 − 
(*).

W qq =
W q

P[q  0]
=



⋅1− ⋅1− 0
=



⋅1− ⋅
= W (*),

Observe that the time a customer has to wait in queue when queue exists is the same as the mean 
time in the system. Because the mean time in the system is the sum of the mean time in queue and 
the mean time in service, that means that the customer that has to wait, has to wait an extra mean 
service time.

Writing the formula for Lq, we have:

Lq =


2

1− 
= 

2
⋅Lqq ⇔

Lq


2 = Lqq . Because 0 ≤ 1 , that means that the mean 

number of customers seen by a customer that has to wait because queue exists , is 
1


2 times 

greater than the mean number of customers in queue (Lq).

Model M/M/c

Lqq =
Lq

P[N q 0]
=

C c , r⋅
1 − ⋅P[N ≥ c1]

=
C c ,r ⋅

1 − ⋅
c1

1− 

=
C c , r ⋅
c1

=
1

1 − 

W qq =
W q

P[q  0]
=

Cc , r 
c⋅⋅1− ⋅P[N ≥ c]

=
C c , r 

c⋅⋅1− ⋅C c , r 
=

1
c⋅⋅1 − 

(*).

Observe that the formula for Lqq in the M/M/c model adopts the same functional expression as the 
formula for the M/M/1 model.

Doing some algebraic manipulations in Lqq and recalling the formula for Lq:

Lqq =
1

1− 
=

Lq

C c , r⋅
,

That means that 
1

C c , r ⋅
 is the proportion of additional users that a customer is going to meet 

in queue because queue exists. 
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Note that as W qq =
W q

C c , r
, it results that

1
C c , r 

is the proportion of time that Wqq is 

greater than Wq.

Model M/M/1/K:

Lqq =
Lq

P[N q 0]
=

Lq

∑
i=2

K

i

=
Lq

1−0 −1

W qq =
W q

P[q  0]
=

W q

∑
i=1

K−1

qi

=
W q

1− q0
=

W q

1−
0

1 −K



=
W q⋅1 −K

1 −0− K 

Model M/M/c/K:

Lqq =
Lq

P[N q 0]
=

Lq

∑
i=c1

K

 i

=
Lq

1 −∑
i=0

c

 i

W qq =
W q

P[q  0]
=

W q

∑
i=0

K−1

qci

=
W q

1 −∑
i=0

c−1

q i

Model M/M/1/K/K:

Lqq =
Lq

P[N q 0]
=

Lq

∑
i=2

K

i

=
Lq

1−0 −1

W qq =
W q

P[q  0]
=

W q

∑
i=1

K−1

qi

=
W q

1− q0
=

W q

1−
K 0

K − L


=
W q⋅K − L

K − L − K 0

Models M/M/c/K/K and M/M/c/K/m:

Lqq =
Lq

P[N q 0]
=

Lq

∑
i=c1

K

 i

=
Lq

1 −∑
i=0

c

 i

W qq =
W q

P[q  0]
=

W q

∑
i=0

K−1

qci

=
W q

1 −∑
i=0

c−1

q i
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5 Testing the results obtained using Queueing software.

The results of this paper has been tested using queueing, an open source R package, freely available
in CRAN.

To check the results obtained, the following examples can be run in the R console.

Each example has been divided in two parts: one written to check Main Theorem and other to check
the incarnation of Little's Law.

The output of each example that confirms the results of the paper are highlighted in bold.

For a model M/M/1, an example with  =
1
4

,  =
1
3

and setting the model to calculate the 

first ten stationary probabilities (in addition to 0 ) :

> i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=10) 
> o_mm1 <- QueueingModel(i_mm1) 
> Pn(o_mm1) 
 [1] 0.25000000 0.18750000 0.14062500 0.10546875 0.07910156 0.05932617 
 [7] 0.04449463 0.03337097 0.02502823 0.01877117 0.01407838 
> RO (o_mm1) * Qn(o_mm1)[1:10] 
 [1] 0.18750000 0.14062500 0.10546875 0.07910156 0.05932617 0.04449463 
 [7] 0.03337097 0.02502823 0.01877117 0.01407838

> Wqq <- Wq(o_mm1)/(1 - Pn(o_mm1)[1]) 
> Lqq <- Lq(o_mm1)/(1 - Pn(o_mm1)[1] - Pn(o_mm1)[2]) 
> Lqq 
[1] 4 
> Wqq * Inputs(o_mm1)$mu 
[1] 4

For the model M/M/c,  = 5 ,  = 10 , c = 2, and setting the model to calculate the first ten
stationary probabilities (in addition to 0 ):

> i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=10, method=0) 
> o_mmc <- QueueingModel(i_mmc) 
> Pn(o_mmc) 
 [1] 6.000000e-01 3.000000e-01 7.500000e-02 1.875000e-02 4.687500e-03 
 [6] 1.171875e-03 2.929687e-04 7.324219e-05 1.831055e-05 4.577637e-06 
[11] 1.144409e-06 
> RO (o_mmc) * Qn(o_mmc)[1:10] 
 [1] 1.500000e-01 7.500000e-02 1.875000e-02 4.687500e-03 1.171875e-03 
 [6] 2.929687e-04 7.324219e-05 1.831055e-05 4.577637e-06 1.144409e-06 

> Wqq <- Wq(o_mmc)/(Pn(o_mmc)[Inputs(o_mmc)$c+1]/(1-RO(o_mmc))) 
> Lqq <- Lq(o_mmc)/(Pn(o_mmc)[Inputs(o_mmc)$c+2]/(1-RO(o_mmc))) 
> Lqq 
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[1] 1.333333 
> Wqq * Inputs(o_mmc)$c * Inputs(o_mmc)$mu 
[1] 1.333333 

For the model M/M/1/K, an example with  = 5 ,  = 5.714 and K = 15 is run,

> i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15) 
> o_mm1k <- QueueingModel(i_mm1k) 
> Pn(o_mm1k) 
 [1] 0.14169971 0.12399345 0.10849969 0.09494198 0.08307838 0.07269722 
 [7] 0.06361325 0.05566438 0.04870876 0.04262230 0.03729638 0.03263596 
[13] 0.02855789 0.02498941 0.02186682 0.01913443 
> RO(o_mm1k) * Qn(o_mm1k) 
 [1] 0.12399345 0.10849969 0.09494198 0.08307838 0.07269722 0.06361325 
 [7] 0.05566438 0.04870876 0.04262230 0.03729638 0.03263596 0.02855789 
[13] 0.02498941 0.02186682 0.01913443 

> Wqq <- Wq(o_mm1k)/sum(Qn(o_mm1k)[2:(Inputs(o_mm1k)$k)]) 
> Lqq <- Lq(o_mm1k)/sum(Pn(o_mm1k)[3:(Inputs(o_mm1k)$k+1)]) 
> Lqq 
[1] 5.448114 
> Wqq * Inputs(o_mm1k)$mu 
[1] 5.448114

For the model M/M/c/K, with parameters  = 8 ,  = 4 , c = 5, and K = 12:

> i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12) 
> o_mmck <- QueueingModel(i_mmck) 
> Pn(o_mmck) 
 [1] 1.343336e-01 2.686672e-01 2.686672e-01 1.791115e-01 8.955574e-02 
 [6] 3.582230e-02 1.432892e-02 5.731568e-03 2.292627e-03 9.170508e-04 
[11] 3.668203e-04 1.467281e-04 5.869125e-05 
> RO(o_mmck) * Qn(o_mmck) 
 [1] 5.373345e-02 1.074669e-01 1.074669e-01 7.164459e-02 3.582230e-02 
 [6] 1.432892e-02 5.731568e-03 2.292627e-03 9.170508e-04 3.668203e-04 
[11] 1.467281e-04 5.869125e-05

> Wqq <- Wq(o_mmck)/(sum(Qn(o_mmck)[(Inputs(o_mmck)$c+1):(Inputs(o_mmck)$k)])) 
> Lqq <- Lq(o_mmck)/(sum(Pn(o_mmck)[(Inputs(o_mmck)$c+2):(Inputs(o_mmck)$k+1)])) 
> Lqq 
[1] 1.655179 
> Wqq * Inputs(o_mmck)$c * Inputs(o_mmck)$mu 
[1] 1.655179

For the model M/M/1/K/K, with parameters  = 0.25 ,  = 4 and K = 2:

> i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=0) 
> o_mm1kk <- QueueingModel(i_mm1kk) 

13



> Pn(o_mm1kk) 
[1] 0.882758621 0.110344828 0.006896552 
> RO(o_mm1kk) * Qn(o_mm1kk) 
[1] 0.110344828 0.006896552 

> Wqq <- Wq(o_mm1kk)/(sum(Qn(o_mm1kk)[2:(Inputs(o_mm1kk)$k)])) 
> Lqq <- Lq(o_mm1kk)/(sum(Pn(o_mm1kk)[3:(Inputs(o_mm1kk)$k+1)])) 
> Lqq 
[1] 1 
> Wqq * Inputs(o_mm1kk)$mu 
[1] 1

For the model M/M/c/K/K, with parameters  = 8 ,  = 2 , c = 5 and K = 12:

> i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0) 
> ## Build the model 
> o_mmckk <- QueueingModel(i_mmckk) 
> Pn(o_mmckk) 
 [1] 3.342312e-10 1.604310e-08 3.529482e-07 4.705976e-06 4.235378e-05 
 [6] 2.710642e-04 1.517960e-03 7.286206e-03 2.914482e-02 9.326343e-02 
[11] 2.238322e-01 3.581316e-01 2.865053e-01
> RO(o_mmckk) * Qn(o_mmckk) 
 [1] 3.208620e-09 1.411793e-07 2.823585e-06 3.388302e-05 2.710642e-04 
 [6] 1.517960e-03 7.286206e-03 2.914482e-02 9.326343e-02 2.238322e-01 
[11] 3.581316e-01 2.865053e-01

> Wqq <- Wq(o_mmckk)/(sum(Qn(o_mmckk)[(Inputs(o_mmckk)$c+1):(Inputs(o_mmckk)$k)])) 
> Lqq <- Lq(o_mmckk)/(sum(Pn(o_mmckk)[(Inputs(o_mmckk)$c+2):(Inputs(o_mmckk)$k+1)])) 
> Lqq 
[1] 5.751898 
> Wqq * Inputs(o_mmckk)$c * Inputs(o_mmckk)$mu 
[1] 5.751898

For the model M/M/c/K/m,  = 0.25 ,  = 4 , c = 2,  K = 4 and m = 8:

> i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0) 
> o_mmckm <- QueueingModel(i_mmckm) 
> Pn(o_mmckm) 
[1] 0.61233719 0.30616859 0.06697438 0.01255770 0.00196214
> RO(o_mmckm) * Qn(o_mmckm) 
[1] 0.15308430 0.06697438 0.01255770 0.00196214

> Wqq <- Wq(o_mmckm)/(sum(Qn(o_mmckm)[(Inputs(o_mmckm)$c+1):(Inputs(o_mmckm)$k)]))
> Lqq <- Lq(o_mmckm)/(sum(Pn(o_mmckm)[(Inputs(o_mmckm)$c+2):(Inputs(o_mmckm)
$k+1)])) 
> Lqq 
[1] 1.135135 
> Wqq * Inputs(o_mmckm)$c * Inputs(o_mmckm)$mu 
[1] 1.135135
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6 Conclusion

In this paper some useful relationships between probabilities when the system has queue has been 
developed. It is useful by itself because it permits to understand better the phenomena that occurs in
that situation.

An useful incarnation of the Little's Law has been obtained for the models studied. Some work is in 
progress to test if this relationships also holds for more general models (M/G/1, M/G/1/K, etc).

A compilation of formulas for the Lqq and Wqq has been recompiled, and some interesting properties 
has been developed for the infinite population markovian models M/M/1 and M/M/c.

And finally, the results has been checked using a software tool, which it permits to understand the 
phenomena under an easy framework.
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