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Abstract

This paper presents the R package prodest for production function estimation using
the control function approach. Focusing on the Value Added PF, it provides functions
to estimate two–steps models presented by Olley and Pakes (1996) and Levinsohn and
Petrin (2003), as well as their correction proposed by Ackerberg et al. (2015). The
system GMM framework proposed by Wooldridge (2009) is also implemented and tested
in a series of Monte Carlo exercises. The prodest package features the DGP used by
Ackerberg et al. (2015) and allows for the simulation of datasets according to various
measurement errors and random shock variances. I illustrate the package use with an
application to a popular firm–level dataset.
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1. Introduction

The correct estimation of the total factor productivity (TFP) is a fundamental issue in applied
economics and the main topic of several seminal papers. On the one hand, when subject
to positive productivity shocks, firms respond by both expanding their level of output and
demanding more input; negative shocks, on the other hand, lead to a decline in output and
demand for input. The positive correlation between the observable input levels and the
unobservable productivity shocks is a major source of bias in OLS when estimating the total
factor productivity. Various methods have been proposed to tackle such simultaneity issue
and, according to their approaches, is possible to group them in three families: fixed effects,
instrumental variables and control function. In the latter group, Olley and Pakes (1996)
- OP henceforth - are the first to propose a two-step procedure aimed at overcoming the
endogeneity: they use the investment level to proxy productivity. Their approach has been
refined by Levinsohn and Petrin (2003) - LP - and Ackerberg et al. (2015) - ACF. Wooldridge
(2009) proposes a novel estimation setting that shows i) how to obtain LP estimator within

a system GMM econometric framework, which can be estimated in a single step, and ii) the
appropriate moment conditions.

A crucial assumption underlies both the dynamic profit maximization problem faced by the
firm at each time t and all the above models: the idiosyncratic shock to productivity at
time t (i.e., ξt) does not affect the choice of the level of state variables, which is taken at
t − b1, but only that of free variables. Therefore, ξt is uncorrelated to the contemporaneous

1Where b > 0 can take different values depending on state variable dynamics.
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value of the state and to all the lagged values of the free and state variables; all of these are
valid instruments for parameter identification. These, in turn, can be used in GMM–type
estimation settings.

prodest is a brand new package that implements - for the first time on R - all the main
models proposed in the literature so far, in a user-friendly and intuitive way. Dealing with
Value Added models, it allows users to perform (i) TFP estimation following OP, LP, ACF and
Wooldridge methods, and (ii) simulation of production data according to the Data Generating
Process firstly proposed by ACF. The package is written using S4 classes, and provides several
methods such as coef(), summary() and show(), alongside custom methods (omega and
FSres) to extract and analyze the results.

The remainder of the paper is structured as follows: in Section 2 I review the control function
approaches to TFP estimation in the literature, list their weaknesses and provide a general
overview of the state of the art in empirical applications; Section 3 presents prodest, its main
features, structure and functions; in Section 4 I present practical examples of the package
usage, along with comparative results of the various models implemented on real and simulated
data; Section 6 concludes.

2. Control function approach

For the remainder of the paper, consider a simple two-inputs Cobb-Douglas production func-
tion for firm i at time t:2

Yit = AitK
βk
it L

βl
it (1)

where the output Yit is a function of the two input “types” - capital K and labour L - and of
the tecnical efficiency parameter Ait, typically unobservable. Taking the logs, (1) becomes

yit = β0 + litβl + kitβk + ωit + εit (2)

where yit is the log output - in most cases, it amounts to the value added - lit is a 1×J vector
of log free variable and kit is a 1 × K vector of log state variables, and ln(Ait) = β0 + ωit
is the technical efficiency parameter - i.e., the parameter of interest - and εit is an output
shock distributed as a white noise which is not observed by the firm prior to the exit or
input level choices. In this sensethe idiosyncratic terms ωit and εit are not identifiable in
a linear regression setting, which would also suffer from a serious endogeneity (which, as
outlined above, regards ωit only), hence the need for different models. In particular, the
literature has developed three main approaches to the estimation: Instrumental Variable,
Fixed Effects and Control Function. The latter consists of structural empirical models aimed
at performing the estimation through two-steps or single-step, system GMM procedures. The
single most important assumption in such models is that the technical efficiency parameter
dynamic follows a first-order Markov process like:

ωit = E(ωit |Ωit−1) + ξit = E(ωit |ωit−1) + ξit = g(ωit−1) + ξit (3)

2The notation in this paper follows cosely that of Ackerberg et al. (2007) and the section structure recalls
Mollisi and Rovigatti (2018).
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where Ω stands for the information set and ξit is the shock to technical efficiency, orthogonal
to ωit and to the state variables in kit.

2.1. Two-step estimators

OP, LP and ACF propose consistent two-step estimation procedures for (2). They rely on a
few assumptions about both the timing of the underlying firms’ production processes and the
functional form of the variables proxying productivity - pit. OP exploits firm investment levels
as a proxy variable for ωit, while LP and ACF propose to employ the intermediate inputs
level - this approach being useful to overcome the empirical issue of zeros in investment data
due to diverse managerial practices.3

OP and LP For both OP and LP methods, the assumptions needed to ensure consistency
take the form:

A.1 pit = f(kit, ωit) is the proxy function, invertible and monotonically increasing in ωit;

A.2 The state variables level4 evolve according to an investment policy function which is
decided at time t− b, with b ∈ [1, .., T ];

A.3 The free variables5 are non-dynamic, in the sense that their choice at t does not impact
future profits, and are chosen at time t, after the firm productivity shock realizes.

Olley and Pakes (1996) show that, given A.1 and A.2, the investment function iit is orthogonal
to the state variable in a way that that E[iit|kit] = 0 and can be inverted, yielding a proxy
for productivity of the form:

ωit = f−1(iit, kit) = h(iit, kit) (4)

that is, they propose to proxy the technical efficiency parameter ωit by an unknown function
h(.) of observables. Rearranging (2) accordingly, one obtains a partially linear model, through
which the parameters of the free variables - βl - can be consistently estimated. In fact, plugging
(4) in (2) yields

yit = β0 + litβl + kitβk + h(iit, kit) + εit =

= litβl + Φit(iit, kit) + εit
(5)

where Φ(iit, kit) = β0 + kitβk + h(iit, kit). The estimation is performed by a non-parametric
approximation of Φ(iit, kit) - i.e., a nth order polynomial in iit and kit (Φn(·))6. Treating Φ(·)
non-parametrically features some additional advantages: on the one hand, it does not require
to specify the primitives of the model - indeed, the investment function i(·) is a function of

3Most firms accumulate resources even for many years, postponing investment, made all at once afterwards.
4Typically capital, kit.
5Typically labour inputs, lit.
6First Stage. Clearly, the polynomial approximation prevents from a correct estimation of state variable

parameters, which must be retrieved in a second stage.
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demand, market conditions, firm-specific characteristics, etc.) - nor, on the other hand, to
properly characterize the complicated dynamic equilibrium of the game. The estimation of
βl strictly depends on A.3: the free variable parameters are correctly identified as long as
labor is a non-dynamic input. Conversely, if it has dynamic implications, these would enter
the investment function and Φ(·).
The first stage yields an estimate Φ̂it of the term Φ(iit, kit) = β0 + kitβk + h(iit, kit). In
turn, this means that, given a set of parameters (β̂0, β̂k) is possible to retrieve the estimated
technical efficiency parameter by just inverting the terms

ω̂it = Φ̂it − β̂0 − kitβ̂k (6)

Once obtained β̂l, one can exploit the markovian nature of technical efficiency and rewrite
model (5) for yit − litβ̂l using (3):

yit − litβ̂l = β0 + kitβk + ωit + εit =

= β0 + kitβk + g(ωit−1) + ξit + εit =

= β0 + kitβk + g(Φit−1 − kit−1βk) + eit

(7)

with the residual eit = ξit + εit, uncorrelated by definition with all regressors and g(.) can
be approximated by a nth order polynomial. The model, then, can be estimated either by a
non-linear least squares (NLLS) approach - which is the one originally proposed by Olley and
Pakes (1996) - or by constructing a moment condition in state and estimated residuals ξ̂it
(as proposed by Ackerberg et al. (2015) and implemented in prodest).7

In particular, assuming g(.) to follow a random walk, the second stage model reads

yit − litβ̂l = β0 + (kit − kit−1)βk + Φ̂it−1 + eit (8)

and the estimation of equation (8) proceeds by setting up the moment conditions E[eitkit] = 0,
∀k, and the βk∗ vector is the vector of parameters which minimizes the criterion function:

βk∗ = argmin

∑
k

(∑
i

∑
t

eitkit

)2
 (9)

Levinsohn and Petrin (2003) remark that the OP approach has a major drawback in empirical
applications: firm- or plant-level data typically have several zeros in investment data due to
strategic planning practices which violate the monotonicity assumption A.1 and prevent the
estimation of technical efficiency. In fact, the investment level is not decided at each point
in time, but accumulated over the years and then made all at once. LP propose to overcome
the issue by choosing as proxy variable for ωit the intermediate input levels.

LP consider a slightly modified version of (2) accounting for the intermediate inputs (mit) in
the production function:

yit = β0 + litβl + kitβk + ωit +mitβm + εit (10)

7In particular, the whole machinery boils down to non-parametrically regressing ωit on ωit−1 by a non-
parametric approximation, and estimate the residuals ξ̂it.
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Under the set of assumptions A.1-A.3, and with the additional requirement that firms observe
their productivity shock prior to deciding the level of the intermediate input, mit is orthogonal
to the state variables, hence E[mit|kit] = 0 and, similarly to i(·) in OP case, mit can be
inverted:

ωit = f−1(mit, kit) = h(mit, kit) (11)

which is an unknown function of observables. The estimation proceeds analogously to the OP
case, by plugging (11) in (10) and treating Φ(·) non-parametrically in the first stage.

yit = β0 + litβl + kitβk +mitβm + h(mit, kit) + eit =

= litβl + Φit(mit, kit) + eit
(12)

where eit = ξit + εit. As before, equation (12) is a partially linear model identified in the free
variable vector but not in the proxy variable, mit. At the true values [βk∗, βm*] we can define
the residual function eit like:

eit = yit − litβ̂l − kitβ∗k − g
(

Φ̂it−1 (βm∗)− kit−1βk
)

(13)

However, given the correlation between mit and ξit - since the intermediate input level is
chosen after the technical efficiency shock realizes - eit is no longer a combination of pure
errors and the NLLS approach would yield inconsistent estimates. Hence, one should rely
on a GMM estimator by setting the moment conditions E[eitz

k
it]=0, ∀k, where k indexes the

instrument vector z = [kit, mit−1]. In particular, the criterion reads

(βk∗, βm∗) = argmax

∑
k

(∑
i

∑
t

eitz
k
it

)2
 (14)

consistently estimates the set of paramenters (βk, βm).

ACF correction Bond and Soderbom (2005) and Ackerberg et al. (2015) state that, ac-
cording to assumptions A.1-A.3, the free variable coefficients could be consistently estimated
in the first stage only if the free variables are orthogonal to the proxy variable. More specifi-
cally, LP assume that both labor and intermediate input are chosen simultaneously at t and,
in turn, it means that both measures are function of the realized productivity shock and of
the state variables in kit. As a result, βl would not be identifiable in the first stage due to the
collinearity between lit and mit. In other terms:

mit = m(ωit, kit)
lit = l (ωit, kit)

(15)

and, using the monotonicity condition A.2, ACF show that lit = l [h(mit, kit), kit]. Given that
a similar collinearity issue affects the OP estimator, they propose an alternative estimation
approach based on the distinction between labor input lit and free variables wit, and on the
following set of (slightly) modified assumptions:
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B.1 pit = pit(kit, lit, ωit) is the proxy variable policy function, invertible in ωit. Moreover, pit
is monotonically increasing in ωit;

B.2 the state variables kit are decided at time t− b;

B.3 the labor input, lit, is chosen at time t− ζ, where 0 < ζ < 1. The free variables, wit, are
chosen at time t when the firm productivity shock is realized;

B.4 the production function is value added in the sense that the intermediate input mit does
not enter the production function to be estimated.8

Under the set of assumptions B.1-B.3 the first stage estimation removes εit from the the
output yit. More specifically, the proxy variable can be inverted and plugged in equation (2)
yielding:

yit = Φit(pit, kit, wit, lit) + εit (16)

where Φit(pit, kit, wit, lit) = kitβk+witβw+litβl+h(pit, kit, wit, lit). For any vector (β∗k, β
∗
w, β

∗
l ),

compute the estimated technical efficiency

ω̂it = Φ̂it − kitβk − witβw − litβl (17)

and, similar to OP/LP models, exploit the Markov chain nature of technical efficiency as
in (3) to set up the moment conditions E[ξitz

k
it] = 0, ∀k, where k indexes instruments z =

(kit, mit−1, lit−1). Finally, the resulting GMM criterion reads (Second stage):

(β∗k, β
∗
l , β
∗
m) = argmin

−∑
k

(∑
i

∑
t

ξitz
k
it

)2
 (18)

2.2. Single-step estimators

Wooldridge (2009) takes a different approach and addresses the endogeneity issue affecting
(2) in a generalized method of moments (GMM) framework as in Wooldridge (1996). Such an
approach has the advantages of i) overcoming the identification issue in LP method remarked
by ACF and ii) yielding robust standard errors, possibly accounting for serial correlation and
heteroskedasticity, as opposed to the bootstrapped SE required by OP and LP procedures.

In order to build the relevant moment restrictions, Wooldridge notes that, in equation (12),
Φ(kit,mit) ≡ β0 + kitβk + h(kit,mit) and the assumption underlying the first stage in LP is:9

E(εit|ωit−1, lit, kit,mit, lit−1, kit−1,mit−1, ..., li1, xi1,mi1) = 0 (19)

with no functional form imposed on h(·). Moreover, the markovian nature of technical effi-
ciency dynamics imposes the uncorrelation between shocks to productivity (ξit) and, on the

8The value added production function is required because Bond and Soderbom (2005) show that gross
output production functions are not identifiable without imposing further restrictions of the model. See
paragraph 4.1 of (Ackerberg et al. 2015) for the details.

9The same reasoning, with a slightly different notation, applies to the OP procedure.
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one hand, contemporaneous values of state variables (kit) and, on the other hand, past values
of free variables and intermediate inputs (lit−1 and mit−1). Hence, is possible to rewrite (3)
like:

E(ωit|kit, lit−1, kit−1,mit−1, ..., li1, ki1,mi1) = E(ωit |ωit−1) = f [h(kit−1,mit−1)] (20)

and no functional form is imposed for f(·) as well. Equations (19) and (20) inform the moment
restrictions to set up the system GMM:

yit = β0 + litβl + kitβk + h(kit,mit) + εit (21)

yit = β0 + litβl + kitβk + f [h(kit−1,mit−1)] + ηit (22)

where ηit = ξit + εit. In practical applications, the unknown functional forms h(·) and f(·)
are approximated by nth order polynomials in the state and proxy variables. In particular, if
we assume that

h(kit, mit) = λ0 + c(kit,mit)λ1 (23)

it implies f(ωit) = δ0 + δ1[c(kit,mit)λ1] + δ2[k(xit,mit)λ1]
2 + ... + δG[k(xit,mit)λ1]

G, where
G is the order of the polynomial approximating f(·). In prodest, and for the remainder of
the paper, we consider the case with G = 1 and δ1 = 1. Provided that, a straightforward
substitution in (21) and (22) yields

yit = α0 + litβl + kitβk + c(kit,mit)λ1 + εit (24)

yit = α0 + litβl + kitβk + c(kit−1,mit−1)λ1 + ηit (25)

with α0 = β0 + λ0. For each t > 1 it is possible to setup an IV GMM based on the residual
functions

rit(θ) =

(
rit1(θ)
rit2(θ)

)
=

(
yit − ζ − litβ − kitγ − c(kit,mit)λ1

yit − θ − litβ − kitγ − c(kit−1,mit−1)λ1

)
(26)

and the choice of instruments for (24) and (25) exploits the orthogonality conditions in (19)-
(20). More specifically, Wooldridge defines

Zit =

(
zit1
zit2

)
=

(
(1, kit, lit, c(kit,mit))

(1, kit, lit−1, c(kit−1,mit−1))

)
(27)

and the moment restrictions follow from E[Z′itrit(θ)] = 0.

Following the remarks by ACF on input timing decisions, eq. (24) cannot identify any of
the parameters of interest, however, as Wooldridge (2009) himself states, it is possible to
semi-parametrically estimate eq. (25). In particular, provided the orthogonality condition

E(ηit|kit, lit−1, kit−1,mit−1, ..., li1, ki1,mi1) = 0, t = 2, .., T (28)
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an instrumental variable version of the estimator proposed by Robinson (1988) can achieve
the identification of βk and βl.

3. The R package prodest

The R package prodest offers an integrated environment to deal with production function
approach methods in R. The implementation is straightforward and follows from the steps
and the models outlined in the previous section. In particular, the package includes functions
for i) estimation, and ii) simulation of production function data along with a subset of a
widely used dataset on Chilean industrial production.

The general nomenclature of estimation functions is “prodest[method]()” , where methods
are OP, LP, ACF, WRDG and ROB (these refer to estimators proposed by (Olley and Pakes
1996; Levinsohn and Petrin 2003; Ackerberg et al. 2015; Wooldridge 2009; Robinson

1988), respectively). They all return objects of class “prod”, featuring a Model, a Data and
an Estimates lists. The function panelSim() is a Data Generating Process (DGP) returning
a data.frame with 9 vectors: the ID variable, the time variable, the log output, the log of
free and state variables, and four proxy variables with different values of measurement error.
The DGP is directly taken from the one proposed and used by Ackerberg et al. (2015).

3.1. Data Structure and Specification

Production function estimation needs to be run on panel data, i.e., a specific type of data in
which each row corresponds to an individual/time couple.10 In prodest, estimation functions
requrie the user to pass both an ID and a time variable: their combination must uniquely
identify every observation and hence provide the panel dimensions of the data.

All prodest estimation functions accept at least 6 objects:11

- Y: the log value added output;

- fX: the log free variables. These often account for the labor input - lit and wit in previous
models;

- sX: the log state variables. These often account for the capital input - kit in previous
models;

- pX: the log proxy variables. In OP these account for the amount of investment (corre-
sponding to iit in 5), whereas, following LP, ACF and WRDG, these account for the
material input - mit;

- idvar: the id varaible identifying individual panels. More specifically, it must contain
a unique identifier for the plant / firm, either in string or (preferred) numeric format;

- timevar: the time variable. It should contain the date (year, quarter, etc.) in numeric
format.

10See Croissant and Millo (2008) for a discussion on panel data and panel data econometrics in R.
11These can be vectors, matrices or data.frame objects.
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All objects must be of the same length - N∗ - and can contain NAs and missing values.
There is a number of optional input, mostly model-specific, which are accepted by most
prodest functions. cX stores optional control variables used in the estimation, by default
cX = NULL. The standard errors in the two-step models (OP, LP and the ACF-corrected
versions) are computed by cluster bootstrap, hence there are further parameters related to
bootstrap repetitions (R, which is 20 by default), second stage optimization (opt, tol and
theta0 to set the optimizer, the optimization tolerance and the starting points, respectively)
and parallelization (cluster).

In particular, opt accepts a string element taking values ‘optim’, ‘DEoptim’ or ‘solnp’. These
refer to optimization procedures used for the second stage in the GMM framework: optim
(package stats) performs general-purpose optimization based on Nelder-Mead algorithm; DE-
optim - package DEoptim by (Mullen et al. 2011; Ardia et al. 2011) - implements the
optimization by the Differential Evolution algorithmPrice et al. (2006); solnp - package
Rsolnp by Ghalanos and Theussl (2015) - implements the solver originally proposed by Ye
(1988).

The cluster option - cluster = NULL by default - accepts objects of class SOCKcluster

or cluster (e.g., using makeCluster() in parallel by Tierney and R Core team).12 When
specified, the bootstrap repetitions for the second stage standard errors are performed in
parallel. theta0 is a numeric vector/matrix that can be specified in order to provide starting
points in the optimization of the second stage. Its use is recommended for methods like ACF,
which are very sensitive and whose value function appears to show several local maxima -
section 4 for a general discussion of the issue. By default theta0 = NULL and, in this case,
the starting points are the first-stage results plus a noise drawn from a standard normal
(µ0 = 0, σ2 = 0.01).

3.2. Data Transformation

Raw data passed to prodest are transformed and integrated in order to allow the estimation
of the models described in the previous section. In order to approximate h(·), the routine
generates a polynomial of 3rd degree in state and proxy variables. Moreover, it generates
lags of the state and free variables (kit−1 and lit−1) to be used as instruments in the second
stage estimation. Note that, in order to do that, the lag() function of package stats is not
applicable, as it is unable to determine when individual changes. In addition, prodest works
with unbalanced panels, and must deal with individual time series of different length.13 The
auxiliary function lagPanel() in prodest correctly handles the panel nature of the data and
returns the lagged series.

Finally, all variables are collected in a data.frame object and are purged from missing values
in both the original and the lagged variables - this is always compulsory, as the first observation
per panel misses the lagged value.

3.3. Estimation

12(Schmidberger et al. 2009) extensively present parallel computing in R.
13Balanced panel dataset are seldom observed in the producvitity estimation literature: in most cases, firms

enter/exit the market at different rates, and this reflects in individual panels appearing or disappearing in the
dataset.
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Two-step estimators prodestOP() and prodestLP() implement the Olley and Pakes
(1996) and Levinsohn and Petrin (2003) models, respectively. They proceed with a straight-
forward OLS estimation of eq. (5) and (12), where Φ(·) is approximated by a 2nd order
polynomial in state and proxy variables (first stage). The regression yields consistent esti-
mates of βl and hence is possible to compute Φ̂it = ȳit − β̂llit, where ȳit stands for the first
stage fitted values. The residuals εfsit = yit − ȳit = yit − β̂0 − β̂llit − β?kkit14 are stored in

the FSresiduals object. Using Φ̂ and the moment conditions in (9) or (14) the commands
proceed with the GMM estimation of the second stage, which yields β̂k by approximating
g(·) through a 2nd order polynomial. Standard errors for βk, then, are computed by cluster-
bootstrapping at the individual level the second stage; the standard errors of βl are instead
provided by the lm() command directly in the first stage.

According to Olley and Pakes (1996), the outlined model potentially suffers from a selection
bias due to the nature of plant-level production data15. The fact that many individuals drop
out of the sample is not surprising for practitioners since in many markets even very high levels
of turnover among players are regularly observed. However, the choice to stop producing -
i.e., to exit the market - is non-random and highly correlated with the unobservable technical
efficiency parameter ω. Moreover, the straightforward solution “use a balanced sub-sample
of plants” may introduce a different bias on factor coefficients. In fact, if we assume that
plants with higher capital stocks are less likely to drop out of the sample in case of negative
shocks - which is a reasonable point for several reasons - then reducing the observations on
the survival rate basis would generate a sample with a non-zero correlation between ξit and
kit (i.e., would undermine the parameter identification). The solution proposed to correct
for the attrition bias involves two steps. First, by estimating a probit of the survival binary
variable on a polynomial of lagged values of state and proxy variables is possible to fit the
survival probability at each point in time (P̂it). Then, a 3rd order polynomial in P̂it is used
to augment the polynomial in eq. (??) and (13) and control for survival probability in the
second stage:

eit = yit − litβ̂l − kitβ∗k − g
(

Φ̂it−1 (βm∗)− kit−1βk, P̂it
)

(29)

In practice, this reduces to expand the polynomial in Φ with higher-order terms in P̂it and
all cross products and to minimize the resulting criterion.

prodestACF() builds on a similar framework, as remarked in the previous section, but the
first stage regression in (16) does not yield the free variables’ parameters β̂l, which is instead
estimated jointly with β̂k in the second stage regression. By exploiting the moment conditions
in (??), the estimation is performed in a GMM setting similar to the one proposed by OP and
LP. The standard errors of both the free and the state variables parameters are computed by
cluster-bootstrapping at individual level the second stage.

Below I report an example of two-step estimators run on a subset of a well-known dataset of
chilean production plants 1996-2006. The estimated model assumes a production function of

14Where ? indicates the first-stage estimate, which is different from the “final” estimation β̂k performed in
the second stage.

15Which is the typical format of the data used for estimation.
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the type

yit = β0 + skilitβskil + unskilitβunskil + kitβk + ωit + εit (30)

where skil and unskil are both free variables and stand for skilled and unskilled labor input,
respectively. We use investment (OP) and material input (LP and ACF) to perform the above
models. The ACF model Lastly, we print the results of all models using prodest auxiliary
function printProd() - see section 5 for a detailed description.

R> require(prodest)

R> data(chilean)

R> OP <- prodestOP(Y, fX = cbind(fX1, fX2), sX, pX = inv, idvar, timevar, R = 20)

R> LP <- prodestLP(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar, R = 20)

R> ACF <- prodestACF(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar, R = 20,

+ theta0 = (c(.5,.5,.5)))

R> printProd(list(OP,LP,ACF), modnames = c('OP','LP','Acf'),
+ parnames = c('beta_sk','beta_unskil','beta_k'), screen = TRUE)

-- -- -- -- -- -- -- -- -- --

OP LP Acf

-- -- -- -- -- -- -- -- -- --

beta_sk 0.314 0.199 0.646

(0.041) (0.026) (0.113)

------ ------ ------ ------ ------ ------

beta_unskil 0.256 0.169 0.644

(0.034) (0.019) (0.199)

------ ------ ------ ------ ------ ------

beta_k 0.168 0.117 0.251

(0.025) (0.048) (0.042)

------ ------ ------ ------ ------ ------

N 2544 2544 2544

------ ------ ------ ------ ------ ------

Single-step estimators The Wooldridge (2009) estimator is implemented in two ver-
sions by prodest, with functions prodestWRDG() and prodestWRDG_GMM(). In particular, the
estimation performed by prodestWRDG() is obtained by approximating f(·) by a 1st order
polynomial (i.e., G = 1) and assuming δ1 = 1 in (22). In this case, the whole system can be
written in the linear form

y∗it = X∗itβ + rit (31)

where y∗it is a vector of twice stacked yit, β is the vector of parameters of interest, rit is the
vector of residuals - more specifically, it is obtained stacking the residual vectors in 26. The
matrix of regressors X∗it is defined as

Xit =

(
1 0 lit kit c(kit,mit)
0 1 lit kit c(kit−1,mit−1)

)
(32)
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and the estimation proceeds with a plain linear IV estimation using the instruments Zit as in
(27). In prodest the estimation is run through a 2SLS approach with lm(), and the standard
errors are computed accordingly.

prodestWRDG_GMM() implements a slightly different version of the same model aimed at the
estimation within a GMM framework. Stacking variables in eq. (24) and (25) would generate
a matrix suffering issues due to the collinearity of regressors. In order to address the issue,
the stacked matrix X∗it is built in the following way:

X∗it =



X111 · · · X1k1 X1k+1
1 · · · X1r11 0 0 0

...
. . .

...
...

. . .
... 0 0 0

X11N · · · X1kN X1k+1
N · · · X1r1N 0 0 0

X211 · · · X2k1 0 0 0 X2k+1
1 · · · X2r21

...
. . .

... 0 0 0
...

. . .
...

X21N · · · X2kN 0 0 0 X2k+1
N · · · X2r2N


(33)

where k is the number of regressors common to both equations - i.e., the constant β0,
the free and state variables in equations (21) and (21) - r1 the number of regressors in
the first equation only and r2 the regressors in the second. The estimation is then per-
formed in two steps: first, the GMM solution for over-identified linear models reads β̂0 =
((X∗′Z)W 0(Z ′X∗))−1(X∗′Z)W 0(Z ′Y ∗) - first step with unadjusted and independent weight-
ing matrix W 0. Using β̂0, define the optimal weighting matrix W ? = σrsZ

′Z and the final
parameters are estimated in the second step like β̂? = ((X∗′Z)W ?(Z ′X∗))−1(X∗′Z)W ?(Z ′Y ∗).
The variance-covariance matrix is V ar(β̂?) = 1

N ((X∗′Z)W ?(Z ′X∗))−1.16

prodest implements the semi-parametric estimator proposed by Wooldridge (2009) - which is
the IV version of the estimator originally proposed by Robinson (1988) in a different context.
More specifically, it is possible to identify the parameters in(22) by using the lag of the free
variables as excluded instruments. In prodestROB(), the estimation is performed through
the ivreg function in package AER by Kleiber and Zeileis (2008).

R> require(prodest)

R> data(chilean)

R> WRDG <- prodestWRDG(Y, fX = cbind(fX1, fX2), sX, pX = inv, idvar, timevar)

R> WRDG.GMM <- prodestWRDG_GMM(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar)

R> ROB <- prodestROB(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar)

R> printProd(list(WRDG, WRDG.GMM, ROB), modnames = c('WRDG','WRDG-GMM','ROB'),
+ parnames = c('beta_sk','beta_unskil','beta_k'), screen = TRUE)

-- -- -- -- -- -- -- -- -- --

WRDG WRDG-GMM ROB

-- -- -- -- -- -- -- -- -- --

beta_sk 0.375 0.247 0.255

(0.015) (0.017) (0.02)

------ ------ ------ ------ ------ ------ ------

beta_unskil 0.309 0.217 0.218

16see (Wooldridge 2001, 2002)
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(0.014) (0.015) (0.018)

------ ------ ------ ------ ------ ------ ------

beta_k 0.18 0.058 0.16

(0.028) (0.031) (0.025)

------ ------ ------ ------ ------ ------ ------

N 2544 1944 2544

------ ------ ------ ------ ------ ------ ------

Output objects class All prodest estimation functions return objects of the S3 class prod.
These are lists of length 3 with elements Model, Data and Estimates; in turn, each element
features several subelements:

• Model:

– $method, a string with the method - OP, LP, WRDG, WRDG.GMM, ROB - used
in the estimation;

– $boot.repetitions, the number of boostrap repetitions used to compute the stan-
dard errors (OP, LP and ACF only);

– $elapsed.time, the estimation time;

– $theta0, the vector of optimization starting points (OP, LP and ACF only);

– $opt, a string with the optimizer used in the second stage (OP, LP and ACF only);

– $opt.outcome, the output from the optimizer (OP, LP and ACF only);

– $FSbetas, the vector of first stage estimated parameters (OP, LP and ACF only).

• Data:

– $Y, the log value added;

– $free, $state, $proxy, $control, the log free, state, proxy and (optional) control
variables;

– $idvar stores the panel variable - i.e., the variable with the individual identifier;

– $timevar stores the time variable;

– $FSresiduals vector contains the vector of first-stage residuals.

• Estimates:

– $pars, the named vector of estimated parameters;

– $std.errors, the named vector of parameters’ standard errors.

3.4. Simulation

Ackerberg et al. (2015) in their seminal paper, discuss in-depth the Data Generating Pro-
cess underlying production functions and, in particular, focus on the functional dependence
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problem affecting the identification of βl in the LP procedure.17 They consider, for their
Monte Carlo exercises, three different DGPs. First, they allow for serial correlation in wages
with labor input decisions taken at t (DGP1); second, they implement a model with opti-
mization error in the labor input decision (DGP2); third, both sources of heterogeneity are
considered at once (DGP3). Finally, in all models they allow the input variables to be mea-
sured with errors; more specifically, for each DGP, they run models with σerror = 0, .1, .2 or
.5. panelSim() implements all the above DGPs, allowing the user to specify the number of
“firms”, the simulated times and several other characteristics.

panelSim() accepts up to 9 optional inputs, namely

• N, which is the number of firms;

• T, the time spanned by the simulation. Only the last 10% of simulated times per panel
will be returned;

• alphaL and alphaK, the parameters of the free and the state variables, respectively;

• DGP, which controls for the type of DGP;

• rho is the AR(1) coefficient of ω in equation (3);

• sigeps and sigomg, the standard deviations of ε and of the productivity shocks;

• rholnw, which is the AR(1) coefficient of log(wages)

panelSim() returns a data.frame with the idvar, the timevar, the output Y, the free - fX
- and state - sX - variables. In addition, it produces 4 proxy variables (pX1-pX4), simulated
with a measurement error drawn from distributions with standard deviation of 0, 0.1, 0.2 and
0.5, respectively. timevar will amount to the 10% of T, in order to deliver only observations
simulated in equilibrium.

By default, N = 1,000 and T = 100, hence panelSim() returns a N × (T/10) = 1, 000 ∗ 10 =
10, 000 observations data.frame with 9 variables. Below a usage example (Monte Carlo with
ACF and LP models) with N = 500 and T = 100, repeated for all possible values of σerror.

R> require(prodest)

R> prod.data <- panelSim(N = 500)

R> attach(prod.data)

R> ACF.fit1 <- prodestACF(Y, fX, sX, pX1, idvar, timevar, theta0 = c(.5,.5))

R> LP.fit1 <- prodestLP(Y, fX, sX, pX1, idvar, timevar)

R> ACF.fit2 <- prodestACF(Y, fX, sX, pX2, idvar, timevar, theta0 = c(.5,.5))

R> LP.fit2 <- prodestLP(Y, fX, sX, pX2, idvar, timevar)

R> ACF.fit3 <- prodestACF(Y, fX, sX, pX3, idvar, timevar, theta0 = c(.5,.5))

17In a nutshell, if lit is functionally dependent from kit, mit and t - in the sense that lit is only a function
of capital, intermediate input and time - then the first stage regression is not identifiable, because there is no
source of variation in lit conditional on the above elements. Indeed, they show that LP procedure in the first
stage correctly identifies the parameter of free variables only in three - very specific - cases: i) there is an i.i.d.
optimization error in the free variables - and not in the proxy, ii) i.i.d. shock to the price of either labor or
output at t − ε, when the level of proxy variable has already been chosen, but not that of the free variables,
iii) labor is chosen at t− b, as a function of ωt−b, but the investment level is chosen at t.
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R> LP.fit3 <- prodestLP(Y, fX, sX, pX3, idvar, timevar)

R> ACF.fit4 <- prodestACF(Y, fX, sX, pX4, idvar, timevar, theta0 = c(.5,.5))

R> LP.fit4 <- prodestLP(Y, fX, sX, pX4, idvar, timevar)

R> printProd(list(LP.fit1, ACF.fit1,LP.fit2, ACF.fit3,LP.fit2, ACF.fit3,LP.fit4,

+ ACF.fit4), screen = TRUE, modnames = c("LP1", "ACF1","LP2", "ACF2","LP3",

+ "ACF3","LP4", "ACF4"), parnames = c("beta_free", "beta_state"))

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

LP1 ACF1 LP2 ACF2 LP3 ACF3 LP4 ACF4

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

beta_free 0.001 0.601 0.679 0.638 0.679 0.638 0.875 0.654

(0.008) (0.013) (0.008) (0.017) (0.008) (0.017) (0.006) (0.02)

---------------- ---------------- ---------------- ---------------- ----------------

beta_state 1.072 0.385 0.356 0.382 0.356 0.382 0.137 0.36

(0.047) (0.02) (0.014) (0.022) (0.014) (0.022) (0.139) (0.028)

---------------- ---------------- ---------------- ---------------- ----------------

N 5000 5000 5000 5000 5000 5000 5000 5000

---------------- ---------------- ---------------- ---------------- ----------------

3.5. Methods

prodest features several post-estimation methods aimed at handling prod objects. Among
them, show(), coef(), FSres() and summary, aimed at extracting parts of the stored results;
see help("prod"). omega() generates the residuals of the second stage, namely, the estimates
of the log productivity term.

4. Comparative results

4.1. Real Data

In table (1) we report the results of all models implemented in prodest on a sectoral subset
of the well-known and broadly used dataset of Chilean firms 1986-1996.

As an illustration of how prodest works, the code producing table (1) reads

R> require(prodest)

R> data(chilean)

R> OP <- prodestOP(Y, fX = cbind(fX1, fX2), sX, pX = inv, idvar, timevar, R = 100)

R> LP <- prodestLP(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar, R = 100)

R> ACF <- prodestACF(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar, R = 100)

R> WRDG <- prodestWRDG(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar)

R> WRDG.GMM <- prodestWRDG_GMM(Y, fX = cbind(fX1, fX2), sX, pX, idvar, timevar)

R> printProd(list(OP,LP,ACF,WRDG,WRDG.GMM), modnames = c('OP','LP','Acf','Wrdg'
+ ,'Wrdg.GMM'), parnames = c('$\\beta_{skil}$',
+ '$\\beta_{unskil}$','$\\beta_{k}$'))



16 The R package prodest

Table 1: Chilean dataset - sectoral estimation

OP LP Acf Wrdg Wrdg.GMM

βskil 0.314 0.199 0.154 0.246 0.247
(0.041) (0.025) (0.152) (0.014) (0.017)

βunskil 0.256 0.169 0.158 0.214 0.217
(0.032) (0.024) (0.134) (0.013) (0.015)

βk 0.168 0.117 0.138 0.145 0.058
(0.031) (0.044) (0.092) (0.024) (0.031)

N 2544 2544 2544 2544 1944

Note: productivity estimation on a sector-specific sample of Chilean firms 1986-1996. Free variables are skilled
and unskilled quantities of labor input, the state variable is capital k and the proxy variables is investment -
OP - or material inputs - LP, ACF, WRDG. Column titles indicate the estimated models. Standard errors are
bootstrapped - for all but WRDG and Wrdg.GMM models - and reported in parenthesis.

\begin{tabular}{ccccccccccc}\hline\hline

& & OP & & LP & & Acf & & Wrdg & & Wrdg.GMM \\\hline

$\beta_{skil}$ & & 0.314 & & 0.199 & & 0.154 & & 0.246 & & 0.247 \\

& & (0.041) & & (0.025) & & (0.152) & & (0.014) & & (0.017) \\

& & & & & \\

$\beta_{unskil}$ & & 0.256 & & 0.169 & & 0.158 & & 0.214 & & 0.217 \\

& & (0.032) & & (0.024) & & (0.134) & & (0.013) & & (0.015) \\

& & & & & \\

$\beta_{k}$ & & 0.168 & & 0.117 & & 0.138 & & 0.145 & & 0.058 \\

& & (0.031) & & (0.044) & & (0.092) & & (0.024) & & (0.031) \\

& & & & & \\

& & & & & \\

N & & 2544 & & 2544 & & 2544 & & 2544 & & 1944 \\\hline\hline

\end{tabular}

4.2. Monte Carlo simulations

As remarked above, using panelSim() allows the user to run Monte Carlo simulations on
data simulated using the DGPs proposed by Ackerberg et al. (2015). In table (2) we report
a replica of Ackerberg et al. (2015)’s Table I using prodestACF() - columns 1-4 - and
prodestLP() - columns 5-8 - on 12 different simulated datasets (DGP1-3, each featuring 4
different levels of measurement error). Results replicate fairly well those presented in the
original paper.
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Table 2: ACF and LP - Monte Carlo Simulations

ACF LP
βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.599 0.009 0.401 0.015 -0.004 0.005 1.099 0.030
0.1 0.600 0.011 0.425 0.016 0.679 0.009 0.365 0.012
0.2 0.621 0.012 0.406 0.015 0.790 0.007 0.242 0.010
0.5 0.668 0.015 0.357 0.017 0.876 0.005 0.195 0.160

DGP2 - Optimization Error in Labor
0.0 0.606 0.054 0.395 0.054 0.600 0.003 0.401 0.013
0.1 0.610 0.030 0.406 0.033 0.755 0.004 0.257 0.009
0.2 0.617 0.021 0.404 0.024 0.809 0.004 0.205 0.010
0.5 0.633 0.019 0.389 0.022 0.864 0.003 0.446 0.238

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.593 0.005 0.409 0.014 0.473 0.003 0.576 0.017
0.1 0.602 0.037 0.425 0.041 0.635 0.005 0.417 0.012
0.2 0.610 0.042 0.424 0.041 0.702 0.005 0.348 0.012
0.5 0.621 0.023 0.415 0.027 0.778 0.005 1.320 0.191

Notes: 1000 replications. True values of parameters are βl = 0.6 and βk = 0.4. Standard deviations have been
calculated among 1000 replications. ρ is set at .7 and we used optim (optimizer: ’BFGS’).
DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t− b (DGP1 plus
DGP2)
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5. Auxiliary Functions

5.1. lagPanel() and printProd()

lagPanel() is an auxiliary function used to obtained lagged values of variables, individual by
individual, in panel datasets. The function accepts 3 inputs - namely the idvar, the timevar

and the variable to be lagged - and returns a vector storing the lagged values of the original
variable. The first observation per individual is missing - being the lagged value of the first
observations, unavailable by definition.

printProd() accepts a list of prod objects and up to 6 optional inputs. By default, it prints
on screen a .tex tabular with the estimation results of the models passed to the function.

• mods is a list of prod objects - i.e., output from prodest estimation functions;

• modnames optionally provides the labels of the models in mods. By default modnames =

NULL;

• parnames optionally stores the names of the reported parameters. By default parnames
= NULL;

• outfile is the name of the file (in .tex format) which stores the tabular produced by
printProd(). By default outfile = NULL;

• ptime optionally adds the estimation time to the output table. By default ptime =

FALSE;

• nboot optionally adds the number of bootstrap repetitions to the output table. By
default nboot = FALSE;

• screen prints the output results on screen. By default screen = FALSE.

5.2. Parallel

Parallel computing is extremely useful in prodest applications, mostly when dealing with a
high number of bootstrap repetitions. In table (3) we report the results, in terms of estimates,
number of bootstrap repetitions and computing time, of the ACF model run on a simulated
dataset (DGP = 2, N = 1000, T = 100) with 100 and 1000 bootstrap repetitions and estimated
plainly - columns (1) and (4) - or parallelized over 2 - columns (2) and (5) - and 3 - columns
(3) and (6) - cores. See Computational Details below for a full reference to the hardware used.

As expected, the computational time decreases with the number of cores employed, and
it is particularly relevant when the number of bootstrap repetitions increases: with 1000
repetitions, using 3 cores halves the computational time (≈ 6 to ≈ 3 mins).

6. Conclusions

This article introduces the R package prodest for production function estimation using the
control function approach. prodest is the first R package that implements the models pro-
posed by Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015)
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Table 3: ACF estimation in parallel - various cores

100 Repetitions 1000 Repetitions
Acf Acf-par2 Acf-par3 Acf Acf-par2 Acf-par3

βfree 0.617 0.617 0.617 0.617 0.617 0.617
(0.007) (0.007) (0.007) (0.009) (0.009) (0.009)

βstate 0.386 0.386 0.386 0.386 0.386 0.386
(0.014) (0.014) (0.014) (0.016) (0.016) (0.016)

Time 0.59 0.48 0.44 6.19 3.43 3.23
BootRep 100 100 100 1000 1000 1000

N 10000 10000 10000 10000 10000 10000

Notes: all models are estimated on a DGP1, N=1000, T=100 simulated dataset. Columns (1)-(3) show models
estimated with 100 bootstrap repetitions for the standard errors, while (4)-(6) employ 1000 repetitions.
Estimates are obtained using 1 (plain), 2, or 3 cores in parallel.

and Wooldridge (2009); as such, it allows researchers to perform their applied research on
TFP within the R environment. Among the main features of the package, the panelSim()

functions provides a powerful tool for practitioners interested in running Monte Carlo, being
able to simulate data from DGPs with diverse characteristics, and already used in the relevant
literature.

The estimation functions deal with the panel data structure in a relatively simple way, as users
are required to specify the idvar and timevar at each call. On the input side, all functions
require the free, state and proxy variables either as data.frame or matrix objects. Moreover,
they feature options to take care of model characteristics (i.e., attrition, control variables,
etc.) and optimization procedures (e.g., starting points, choice of optimizer, tolerance). On
the output side, the new class prod objects store all the relevant information on the model, the
data and the estimated parameters; moreover, prodest includes a series of auxiliary functions
and methods sepcifically developed to deal with these objects.
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Computational Details

All results in this paper were obtained using R 3.3.2 (R Core Team 2017) with the pack-
ages: prodest version 1.0.1 Rovigatti (2017), Rsolnp version 1.16 Ghalanos and Theussl
(2015), DEoptim version 2.2.4 Ardia et al. (2011), plyr version 1.8.4 Wickham (2011), par-
allel version 3.3.2 R Core Team (2017), Matrix version 1.2.7.1 Bates and Maechler (2016).
Computations were performed on a Intel® Core CPU i7–6500U 2.59Ghz processor.

R itself and all packages used are available from CRAN at http://CRAN.R-project.org/.
The package prodest is available from the CRAN repository at https://cran.r-project.

org/package=prodest. The version under development is available in GitHub at https:

//github.com/GabrieleRovigatti/prodest.
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