
RMETRICS - TIMEDATE PACKAGE

Rmetrics - timeDate Package
by Yohan Chalabi, ETH Zurich, Finance Online Zurich
Martin Mächler, Seminar für Statistik, ETH Zurich
Diethelm Würtz, Institute of Theoretical Physics, ETH
Zurich

Figure 1: World map with major time zones. 1

We describe the concepts and methods behind the
S4 class timeDate used in Rmetrics for financial data
with time and holiday’s management.

The timeDate class represents calendar dates and
times as follows:
> library(timeDate)

> showClass("timeDate")

Class "timeDate" [package "timeDate"]

Slots:

Name: Data format FinCenter

Class: POSIXct character character

where the slot @Data contains the timestamps in
POSIXct, @format is the format typically applied to
@Data and @FinCenter is the financial center.

The timeDate class can be summarised as a com-
bination of

• POSIXct timestamp objects always in the GMT
time zone

• in the human readable ISO-8601 format stan-
dard which expresses dates as "%Y-%m-%d"
and dates/times as "%Y-%m-%d %H:%M:%S"

• with a financial center used for the time zone
and daylight saving rules (DST).

The definition of timeDate objects fulfils the
conventions of the ANSI C and POSIX standard
and the ISO 8601 standard. Additionally, Rmet-
rics has added the concept of a “Financial Cen-
ter”. This allows mixing data collected in differ-
ent time zones or handling historical data recorded
in the same time zone but with different DST

rules. The local financial center can be defined via
setRmetricsOptions(myFinCenter =) and
refers, by default, to Greenwich Mean Time (GMT).

Moreover, timeDate offers sophisticated calendar
manipulations for business days, weekends, public
and ecclesiastical holidays. This allows handling day
count conventions and rolling business conventions
according to the rules of ICMA2, ISDA3, and SIFMA4.

In the following sections, we present functions of
the timeDate package. First, the creation of timeDate
objects is explained. Second, operations on timeDate
objects such as mathematical operations, rounding,
subsetting and coercions are discussed. Third, the
use of a financial center with DST rules is described.
Finally, the management of holidays is explained.

How to Create a timeDate Object

There are different ways to generate a timeDate
object. One can either use timeDate(), timeSe-
quence() or timeCalendar().

The function timeDate() creates a timeDate ob-
ject from scratch. It requires a character vector of
timestamps with its financial center. The finan-
cial center (FC) can be specified, as mentioned, via
setRmetricsOptions() or (more cleanly) with the
argument FinCenter. By default, it is set to GMT5.
> # Character Vectors of Dates and Times:

> Dates <- c("2008-09-28","2009-01-15")

> Times <- c("23:12:55", "10:34:02")

> charvec <- paste(Dates, Times)

> # Show my local financial centre

> # by default this is "GMT"

> getRmetricsOptions("myFinCenter")

myFinCenter

"GMT"

> # Create a 'timeDate' object

> timeDate(charvec)

GMT

[1] [2008-09-28 23:12:55] [2009-01-15 10:34:02]

> # Create a 'timeDate' with my financial center

> # set to Zurich

> setRmetricsOptions(myFinCenter = "Zurich")

> timeDate(charvec)

Zurich

[1] [2008-09-28 23:12:55] [2009-01-15 10:34:02]

> # If 'timeDate' was recorded in a different

> # financial center, it will be automatically

> # converted to your local center, i.e. "Zurich".

> timeDate(charvec, zone = "Tokyo")

Zurich

[1] [2008-09-28 16:12:55] [2009-01-15 02:34:02]

1The original data set of the world map with time zones is available at http://efele.net/maps/tz/world/. Full and reduced rda

versions were kindly contributed by Roger Bivand.
2International Capital Market Association
3International Swaps and Derivatives Association
4Securities Industry and Financial Markets Association
5GMT can be considered as a “virtual” financial center

1

http://efele.net/maps/tz/world/

RMETRICS - TIMEDATE PACKAGE

> # You can also convert a recorded 'timeDate'
> # from your financial center "Zurich" to

> # another one, for example "NewYork".

> timeDate(charvec, zone = "Zurich",

+ FinCenter = "NewYork")

NewYork

[1] [2008-09-28 17:12:55] [2009-01-15 04:34:02]

Note: timeDate uses an automated date/time format
identifier for many common date/time formats. In-
deed, whichFormat() tries to recognise the format of
a timestamp character vector.
> whichFormat(charvec)

[1] "%Y-%m-%d %H:%M:%S"

Note: timeDate always uses the midnight standard,
i.e. 00:00:00 marks the beginning of each day.
> midnightStandard("2009-01-31 24:00:00")

[1] "2009-02-01 00:00:00"

The function timeSequence() creates a timeDate
representing an arithmetic sequence of points in
time. You can specify the range of dates with the ar-
guments from and to. If from is missing, length.out
defines the length of the sequence.

In the case of a monthly sequence, you can define
specific rules. For example, you can generate the se-
quence with the last days of the month or with the
last or n-th Friday of every month. This can be of
particular interest in financial applications.

> # Let's work in an international environment:

> setRmetricsOptions(myFinCenter = "GMT")

> # 'timeDate' is now in the financial center "GMT"

> timeDate(charvec)

GMT

[1] [2008-09-28 23:12:55] [2009-01-15 10:34:02]

> # Daily January 2009 Sequence:

> timeSequence(from = "2009-01-01",

+ to = "2009-01-31", by = "day")

GMT

[1] [2009-01-01] [2009-01-02] [2009-01-03] [2009-01-04]

[5] [2009-01-05] [2009-01-06] [2009-01-07] [2009-01-08]

[9] [2009-01-09] [2009-01-10] [2009-01-11] [2009-01-12]

[13] [2009-01-13] [2009-01-14] [2009-01-15] [2009-01-16]

[17] [2009-01-17] [2009-01-18] [2009-01-19] [2009-01-20]

[21] [2009-01-21] [2009-01-22] [2009-01-23] [2009-01-24]

[25] [2009-01-25] [2009-01-26] [2009-01-27] [2009-01-28]

[29] [2009-01-29] [2009-01-30] [2009-01-31]

> # Monthly 2009 Sequence:

> tS <- timeSequence(from = "2009-01-01",

+ to = "2009-12-31", by = "month")

> tS

GMT

[1] [2009-01-01] [2009-02-01] [2009-03-01] [2009-04-01]

[5] [2009-05-01] [2009-06-01] [2009-07-01] [2009-08-01]

[9] [2009-09-01] [2009-10-01] [2009-11-01] [2009-12-01]

> # Do you want the last day or the last Friday of

> # the month Data

> timeLastDayInMonth(tS)

GMT

[1] [2009-01-31] [2009-02-28] [2009-03-31] [2009-04-30]

[5] [2009-05-31] [2009-06-30] [2009-07-31] [2009-08-31]

[9] [2009-09-30] [2009-10-31] [2009-11-30] [2009-12-31]

> timeLastNdayInMonth(tS, nday = 5)

GMT

[1] [2009-01-30] [2009-02-27] [2009-03-27] [2009-04-24]

[5] [2009-05-29] [2009-06-26] [2009-07-31] [2009-08-28]

[9] [2009-09-25] [2009-10-30] [2009-11-27] [2009-12-25]

The function timeCalendar() creates timeDate
objects from calendar atoms. You can specify values
or vectors of equal length of integers denoting year,
month, day, hour, minute and seconds.

> # Monthly calendar for Current Year

> timeCalendar()

GMT

[1] [2009-01-01] [2009-02-01] [2009-03-01] [2009-04-01]

[5] [2009-05-01] [2009-06-01] [2009-07-01] [2009-08-01]

[9] [2009-09-01] [2009-10-01] [2009-11-01] [2009-12-01]

> # Daily 'timeDate' for January data

> # from Tokyo local time 16:00

> timeCalendar(2009, m=1, d=1:4, h=16,

+ zone = "Tokyo", FinCenter = "Zurich")

Zurich

[1] [2009-01-01 08:00:00] [2009-01-02 08:00:00]

[3] [2009-01-03 08:00:00] [2009-01-04 08:00:00]

> # Or add 16 hours in seconds ...

> timeCalendar(2009, m=1, d=1:4, zone="Tokyo",

+ FinCenter="Zurich") + 16*3600

Zurich

[1] [2009-01-01 08:00:00] [2009-01-02 08:00:00]

[3] [2009-01-03 08:00:00] [2009-01-04 08:00:00]

Operations on timeDate Objects

As exemplified in the above code, ’... + 16*3600’,
many operations can be performed on timeDate ob-
jects. For example you can add and subtract, round
and truncate, subset, coerce or transform them to
other objects. These are only a few of the many avail-
able options.

Math Operations

Mathematical operations such as addition, subtrac-
tion and comparisons can be performed on timeDate
objects.
> # Date and time "now" :

> now <- Sys.timeDate(); now

GMT

[1] [2009-05-20 21:48:30]

> # and an hour later:

> now + 3600

GMT

[1] [2009-05-20 22:48:30]

> # Which date/time is earlier or later ?

> tC <- timeCalendar(m = 1:6)

> tR <- tC + round(3600*rnorm(6))

> tR > tC

[1] FALSE TRUE FALSE TRUE FALSE TRUE

Lagging

The timeDate method for diff() returns suitably
lagged and iterated differences.

2

RMETRICS - TIMEDATE PACKAGE

> # Monthly Dates 2009 and January 2009:

> tC <- c(timeCalendar(2009), timeCalendar(2010, m=1))

> diff(tC)# = number of days of months

Time differences in days

[1] 31 28 31 30 31 30 31 31 30 31 30 31

attr(,"tzone")

[1] "GMT"

> # Number of days in total 2009:

> sum(as.integer(diff(tC)))

[1] 365

Rounding and Truncating

Dates and times can be rounded or truncated. This
can be useful in the case of a frequency lower than
seconds, for example hours. To do this you can use
the functions round() and trunc().
> # Round the random time stamps to the nearest hour:

> tC <- timeCalendar(m = 1:4)

> tR <- tC + round(3600*rnorm(4))

> tR

GMT

[1] [2009-01-01 00:50:16] [2009-02-01 00:43:58]

[3] [2009-02-28 23:55:45] [2009-03-31 23:38:14]

> round(tR, "h")

GMT

[1] [2009-01-01 01:00:00] [2009-02-01 01:00:00]

[3] [2009-03-01 00:00:00] [2009-04-01 00:00:00]

> # Truncate by hour or to the next full hour:

> trunc(tR, "h")

GMT

[1] [2009-01-01 00:00:00] [2009-02-01 00:00:00]

[3] [2009-02-28 23:00:00] [2009-03-31 23:00:00]

> trunc(tR + 3600, "h")

GMT

[1] [2009-01-01 01:00:00] [2009-02-01 01:00:00]

[3] [2009-03-01 00:00:00] [2009-04-01 00:00:00]

Subsetting

Subsetting is a very important issue in the manage-
ment of dates and times.

The timeDate package has different functions
to subset a timeDate object. ’[’ extracts or re-
places subsets of timeDate objects, window() extracts
a piece from a timeDate object, and the functions
start() and end() extract the first and last times-
tamps, respectively.
> # Create Monthly Calendar for next year

> cY <- getRmetricsOptions("currentYear")

> tC <- timeCalendar(cY + 1)

> tC

GMT

[1] [2010-01-01] [2010-02-01] [2010-03-01] [2010-04-01]

[5] [2010-05-01] [2010-06-01] [2010-07-01] [2010-08-01]

[9] [2010-09-01] [2010-10-01] [2010-11-01] [2010-12-01]

> # Start, end and length of 'timeDate' objects

> start(tC)

GMT

[1] [2010-01-01]

> end(tC)

GMT

[1] [2010-12-01]

> length(tC)

[1] 12

> # The first Quarter - Several Alternative Solutions:

> tC[1:3]

GMT

[1] [2010-01-01] [2010-02-01] [2010-03-01]

> tC[-(4:length(tC))]

GMT

[1] [2010-01-01] [2010-02-01] [2010-03-01]

> window(tC, start = tC[1], end = tC[3])

GMT

[1] [2010-01-01] [2010-02-01] [2010-03-01]

> cut(tC, from = tC[1], to = tC[3])

GMT

[1] [2010-01-01] [2010-02-01] [2010-03-01]

> tC[tC < tC[4]]

GMT

[1] [2010-01-01] [2010-02-01] [2010-03-01]

> # The Quarterly Series:

> tC[seq(3, 12, by = 3)]

GMT

[1] [2010-03-01] [2010-06-01] [2010-09-01] [2010-12-01]

Logical Test

Weekdays, weekends, business days and holidays
can be tested with the functions: isWeekday(),
isWeekend(), isBizday() and isHoliday().
> # A 'timeDate' Sequence around Easter 2009

> Easter(2009)

GMT

[1] [2009-04-12]

> tS <- timeSequence(Easter(2009, -6),

+ Easter(2009, +7))

> tS

GMT

[1] [2009-04-06] [2009-04-07] [2009-04-08] [2009-04-09]

[5] [2009-04-10] [2009-04-11] [2009-04-12] [2009-04-13]

[9] [2009-04-14] [2009-04-15] [2009-04-16] [2009-04-17]

[13] [2009-04-18] [2009-04-19]

> # Subset weekdays and business days:

> (tW <- tS[isWeekday(tS)])

GMT

[1] [2009-04-06] [2009-04-07] [2009-04-08] [2009-04-09]

[5] [2009-04-10] [2009-04-13] [2009-04-14] [2009-04-15]

[9] [2009-04-16] [2009-04-17]

> dayOfWeek(tW)

2009-04-06 2009-04-07 2009-04-08 2009-04-09 2009-04-10

"Mon" "Tue" "Wed" "Thu" "Fri"

2009-04-13 2009-04-14 2009-04-15 2009-04-16 2009-04-17

"Mon" "Tue" "Wed" "Thu" "Fri"

> (tB <- tS[isBizday(tS, holidayZURICH())])

GMT

[1] [2009-04-06] [2009-04-07] [2009-04-08] [2009-04-09]

[5] [2009-04-14] [2009-04-15] [2009-04-16] [2009-04-17]

> dayOfWeek(tB)

2009-04-06 2009-04-07 2009-04-08 2009-04-09 2009-04-14

"Mon" "Tue" "Wed" "Thu" "Tue"

2009-04-15 2009-04-16 2009-04-17

"Wed" "Thu" "Fri"

3

FINANCIAL CENTERS RMETRICS - TIMEDATE PACKAGE

Coercions and Transformations

timeDate objects do not exist in an isolated world.
Coercions and transformations allow timeDate ob-
jects to communicate with other formatted times-
tamps. But one should bear in mind that informa-
tion can be lost if the other date/time class does not
support the same functionality. The S4 methods to
coerce to and from timeDate objects are
> showMethods("coerce", class = "timeDate")

Function: coerce (package methods)

from="ANY", to="timeDate"

from="Date", to="timeDate"

from="POSIXt", to="timeDate"

from="timeDate", to="character"

from="timeDate", to="data.frame"

from="timeDate", to="Date"

from="timeDate", to="list"

from="timeDate", to="numeric"

from="timeDate", to="POSIXct"

from="timeDate", to="POSIXlt"

Concatenation and Reordering

It might be sometimes useful to concatenate or re-
order timeDate objects. The generic functions to con-
catenate, replicate, sort, re-sample, unify and revert
timeDate objects are the well known functions c(),
rep(), sort(), sample(), unique() and rev().
Note: The c() method for timeDate objects takes
care of the different financial centers of the object
to be concatenated. In such cases, all timestamps
are transformed to the financial center of the first
timeDate object :

> # Concatenate the local time stamps to Zurich time ...

> ZH <- timeDate("2009-01-01 16:00:00",

+ zone = "GMT", FinCenter = "Zurich")

> NY <- timeDate("2009-01-01 18:00:00",

+ zone = "GMT", FinCenter = "NewYork")

> c(ZH, NY)

Zurich

[1] [2009-01-01 17:00:00] [2009-01-01 19:00:00]

> c(NY, ZH)

NewYork

[1] [2009-01-01 13:00:00] [2009-01-01 11:00:00]

> # Reorderings:

> tC <- timeCalendar(m = 1:4); tC

GMT

[1] [2009-01-01] [2009-02-01] [2009-03-01] [2009-04-01]

> tS <- sample(tC); tS

GMT

[1] [2009-01-01] [2009-04-01] [2009-02-01] [2009-03-01]

> tO <- sort(tS); tO

GMT

[1] [2009-01-01] [2009-02-01] [2009-03-01] [2009-04-01]

> tV <- rev(tO); tV

GMT

[1] [2009-04-01] [2009-03-01] [2009-02-01] [2009-01-01]

> tU <- unique(c(tS, tS)); tU

GMT

[1] [2009-01-01] [2009-04-01] [2009-02-01] [2009-03-01]

Financial Centers

Setting Financial Centers

The financial center can be set or changed by
setRmetricsOptions() and accessed with the func-
tion getRmetricsOptions(). Its default value is
"GMT":
> # What is my current Financial Center ?

> getRmetricsOptions("myFinCenter")

myFinCenter

"GMT"

> # Change to Zurich:

> setRmetricsOptions(myFinCenter = "Zurich")

From now on, all dates and times are handled within
the Central European time zone and the DST rule for
Zurich.
Note: By setting the financial center to a conti-
nent/city which lies outside of the time zone used
by your computer does not change any time settings
or environment variables used by your computer.

List of Financial Centers

There are almost 400 financial centers supported by
Rmetrics thanks to the Olson data base. They can be
accessed by the function listFinCenter(). Partial
lists can also be extracted and displayed using regu-
lar expressions:
> # All supported Financial Centers Worldwide:

> FCs <- listFinCenter()

> head(FCs) # the first few

[1] "Africa/Abidjan" "Africa/Accra"

[3] "Africa/Addis_Ababa" "Africa/Algiers"

[5] "Africa/Asmara" "Africa/Bamako"

> str(FCs) # the "overview"

chr [1:397] "Africa/Abidjan" "Africa/Accra" ...

> # European Financial Centers starting with A or B:

> listFinCenter("Europe/[AB].*") # -> nine

[1] "Europe/Amsterdam" "Europe/Andorra"

[3] "Europe/Athens" "Europe/Belgrade"

[5] "Europe/Berlin" "Europe/Bratislava"

[7] "Europe/Brussels" "Europe/Bucharest"

[9] "Europe/Budapest"

DST Rules

Each financial center has an associated function
which returns its daylight saving time rules (DST).
Theses functions are named as their financial center
name, e.g. Zurich(), and return a data.frame.
> # Show the (first 8) DST Rules for Zurich:

> head(Zurich(), 8)

Zurich offSet isdst TimeZone numeric

1 1901-12-14 20:45:52 3600 0 CET -2147397248

2 1941-05-05 00:00:00 7200 1 CEST -904435200

3 1941-10-06 00:00:00 3600 0 CET -891129600

4 1942-05-04 00:00:00 7200 1 CEST -872985600

5 1942-10-05 00:00:00 3600 0 CET -859680000

6 1981-03-29 01:00:00 7200 1 CEST 354675600

7 1981-09-27 01:00:00 3600 0 CET 370400400

8 1982-03-28 01:00:00 7200 1 CEST 386125200

4

HOLIDAYS MANAGEMENT RMETRICS - TIMEDATE PACKAGE

This data.frame shows when the clock was
changed in Zurich, the offset in seconds with respect
to GMT, a flag which tells us if DST is in effect or not,
the time zone abbreviation, and the number of sec-
onds since 1970-01-01 in GMT.

Holidays Management

It is non-trivial to implement functions for business
days, weekends and holidays. It is not difficult in an
algorithmic sense, but it can become tedious to im-
plement the calendar rules.

Special Dates

The timeDate package offers various functions to
compute:

• the first day in a given month and year,

• the last day in a given month and year,

• the n-days before or after a given date,

• the n-th occurrences of the n-days for a speci-
fied year/month,

• or the last n-days for a specified year/month.

Note: n-days are numbered from 0 to 6 where 0 cor-
responds to Sunday and 6 to Saturday.

• timeFirstDayInMonth() computes the first
day in a given month and year.

• timeLastDayInMonth() computes the last day
in a given month and year and.

• timeFirstDayInQuarter() computes the first
day in a given quarter and year.

• timeLastDayInQuarter() computes the last
day in a given quarter and year.

• timeNdayOnOrAfter() computes dates that are
"on-or-after" n-days.

• timeNthNdayInMonth() computes n-th oc-
currence of a n-day in year/month and
timeLastNdayInMonth() computes the last n-
day in year/month.

Holidays

Holidays may have two origins: ecclesiastical or
public/federal. The ecclesiastical calendars of Chris-
tian churches are based on cycles of movable and im-
movable feasts. For example Christmas is the prin-
cipal immovable festival and Easter is the principal
movable festival. Most of the other movable festivals
are related to Easter.
> # List of holidays available in Rmetrics

> listHolidays()

[1] "Advent1st" "Advent2nd"

[3] "Advent3rd" "Advent4th"

[5] "AllSaints" "AllSouls"

[7] "Annunciation" "Ascension"

[9] "AshWednesday" "AssumptionOfMary"

[11] "BirthOfVirginMary" "BoxingDay"

[13] "CACanadaDay" "CACivicProvincialHoliday"

[15] "CALabourDay" "CaRemembranceDay"

[17] "CAThanksgivingDay" "CAVictoriaDay"

[19] "CelebrationOfHolyCross" "CHAscension"

[21] "CHBerchtoldsDay" "CHConfederationDay"

[23] "CHKnabenschiessen" "ChristmasDay"

[25] "ChristmasEve" "ChristTheKing"

[27] "CHSechselaeuten" "CorpusChristi"

[29] "DEAscension" "DEChristmasEve"

[31] "DECorpusChristi" "DEGermanUnity"

[33] "DENewYearsEve" "Easter"

[35] "EasterMonday" "EasterSunday"

[37] "Epiphany" "FRAllSaints"

[39] "FRArmisticeDay" "FRAscension"

[41] "FRAssumptionVirginMary" "FRBastilleDay"

[43] "FRFetDeLaVictoire1945" "GBBankHoliday"

[45] "GBMayDay" "GBMilleniumDay"

[47] "GBSummerBankHoliday" "GoodFriday"

[49] "ITAllSaints" "ITAssumptionOfVirginMary"

[51] "ITEpiphany" "ITImmaculateConception"

[53] "ITLiberationDay" "ITStAmrose"

[55] "JPAutumnalEquinox" "JPBankHolidayDec31"

[57] "JPBankHolidayJan2" "JPBankHolidayJan3"

[59] "JPBunkaNoHi" "JPChildrensDay"

[61] "JPComingOfAgeDay" "JPConstitutionDay"

[63] "JPEmperorsBirthday" "JPGantan"

[65] "JPGreeneryDay" "JPHealthandSportsDay"

[67] "JPKeirouNOhi" "JPKenkokuKinenNoHi"

[69] "JPKenpouKinenBi" "JPKinrouKanshaNoHi"

[71] "JPKodomoNoHi" "JPKokuminNoKyujitu"

[73] "JPMarineDay" "JPMidoriNoHi"

[75] "JPNatFoundationDay" "JPNationalCultureDay"

[77] "JPNationHoliday" "JPNewYearsDay"

[79] "JPRespectForTheAgedDay" "JPSeijinNoHi"

[81] "JPShuubunNoHi" "JPTaiikuNoHi"

[83] "JPTennouTanjyouBi" "JPThanksgivingDay"

[85] "JPUmiNoHi" "LaborDay"

[87] "MassOfArchangels" "NewYearsDay"

[89] "PalmSunday" "Pentecost"

[91] "PentecostMonday" "PresentationOfLord"

[93] "Quinquagesima" "RogationSunday"

[95] "Septuagesima" "SolemnityOfMary"

[97] "TransfigurationOfLord" "TrinitySunday"

[99] "USChristmasDay" "USColumbusDay"

[101] "USCPulaskisBirthday" "USDecorationMemorialDay"

[103] "USElectionDay" "USGoodFriday"

[105] "USInaugurationDay" "USIndependenceDay"

[107] "USLaborDay" "USLincolnsBirthday"

[109] "USMemorialDay" "USMLKingsBirthday"

[111] "USNewYearsDay" "USPresidentsDay"

[113] "USThanksgivingDay" "USVeteransDay"

[115] "USWashingtonsBirthday"

> # The date of Easter for the next 5 years:

> thisYr <- getRmetricsOptions("currentYear")

> Easter(thisYr:(thisYr+5))

Zurich

[1] [2009-04-12] [2010-04-04] [2011-04-24] [2012-04-08]

[5] [2013-03-31] [2014-04-20]

Holiday Calendars

One can easily build new holiday calendars. Three
examples are provided in timeDate to help program-
mers to do so: holidayZURICH(), the Zurich holiday
calendar, holidayNYSE(), the NYSE stock exchange

5

SUMMARY BIBLIOGRAPHY

holiday calendar and holidayTSX(), the TSX holiday
calendar.

Summary

The timeDate package offers calendar manipula-
tions for business days, weekends, public and eccle-
siastical holidays which might be of interest in finan-
cial applications as well as in other fields. Moreover,
the “Financial Center” concept facilitates the mixing
of data collected in different time zones and the ma-
nipulation of data recorded in the same time zone but
with different DST rules.

Session Info
> toLatex(sessionInfo())

• R version 2.9.0 (2009-04-17), i686-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8;LC_NUMERI ...

• Base packages: base, datasets, graphics, grDe-
vices, methods, stats, utils

• Other packages: timeDate 290.85

Bibliography

Bartky R.I., Harrison E. (1979), Standard and Day-
light Saving Time, Scientific American 240, pp. 46–
53.

Bateman R., (2000); Time Functionality in the Stan-
dard C Library, Novell AppNotes, September 2000
Issue, 73–85.

Becker R.A., Chambers J.M., Wilks A.R. (1988), The
New S Language, Wadsworth and Brooks/Cole.

Deggett L.E. (1993), Explanatory Supplement to the
Astronomical Almanac, Editor P. Kenneth Seidel-
mann, University Science Books, Herndon.

Dershowitz N., Reingold E.M. (1990), Calendrical
Calculations, Software - Practice and Experience
20, 899–928.

Dershowitz N., Reingold E.M. (1997), Calendrical
Calculations, Cambridge University Press.

ICMA, International Capital Market Association,
www.icma-group.org.

ISDA, International Swaps and Derivatives Associa-
tion, Inc., www.isda.org.

ISO-8601, (1988), Data Elements and Interchange
Formats – Information Interchange, Representa-
tion of Dates and Time, International Organization
for Standardization, Reference Number ISO 8601,
14 pages.

James D.A., Pregibon D. (1992), Chronological Ob-
jects for Data Analysis, Reprint.

Montes M.J (1996), Butcher’s Algorithm for Calculat-
ing the Date of Easter in the Gregorian Calendar,
no.spam.smart.net.

R Development Core Team (2000), The ’chron’ Pack-
age, www.r-project.org.

R Development Core Team (2000), The ’date’ Pack-
age, www.r-project.org.

Ripley B.D., Hornik K. (2001); Date-Time Classes, R-
News, Vol. 1/2 June 2001, 8–12.

SIFMA, Securities Industry and Financial Manage-
ment Association, www.sifma.org.

Tondering C., (2005), Frequently Asked Questions
about Calendars,
www.tondering.dk/claus/calendar.html.

Therneau T. (1991), S-Plus Date Routines,
www.statlib.org.

Wikipedia, Day Count Convention,
en.wikipedia.org/wiki/Day_count_convention.

6

	Rmetrics - timeDate Package
	Financial Centers
	Holidays Management
	Summary

